数学联邦政治世界观
超小超大

利用S_p证明Wilson定理

问题:p是素数,计算Sₚ,中Sylow p-子群的个数。由此证明Wilson定理:

(p – 1)!≡ —1 (mod p)。

题目几乎已经将证明方法写了出来。因为|Sₚ|=p!=p(p – 1)!,由于(p–1)!中没有素

因子p,由西罗定理,Sₚ 有p阶的西罗p-子群H,因为素数阶的群都是循环群,故每个西罗p-子群H=〈α〉,其中a是某个p元置换,且αᵖ=(1)。接下来的证明将会表明,a一定是某个p轮换。

对于任何一个n轮换σ=(α₁α₂ · · · αₙ),易知

σⁿ=(α₁α₂ · · · αₙ)ⁿ=(1),而且若

k<n,则 σᵏ(α₁)=αₖ₊₁≠α₁,所以

σᵏ≠(1),于是n轮换σ的阶为n。反过来,若一个n元置换τ的阶为n,取τ的轮换分解式τ=σ₁σ₂ · · · σₜ,其中各 σᵢ 为一长度小干等于n的轮换,所有轮换长度之和等于n,且各轮换两两不交,从而两两可交换,那么τᵏ=σᵏ₁σᵏ₂ · · · σᵏₜ,∀k ≥ 1,根据已进行过的讨论可得出 τ 的阶等于各 σᵢ 的阶的最大值,因为 τ 的阶为n,所以 t=1 ,且 τ=σ₁ 为一n轮换。

这样,Sₚ的每个西罗p-子群都由某个p轮换生成。如果 H₁,H₂ 为两个不同的西罗p-子群,容易证明H₁∩H₂=f{(1)},这是因为,若某个(1) ≠ α ∈ H₁ ∩ H₂,因为 H₁ 的阶为p为一素数,所以a生成H₁,从而H₁=〈α〉,但因为α ∈ H₂,很自然有

〈α〉⊂ H₂,也即H₁ ⊂ H₂,二者阶相等,从而 H₁=H₂,这与二者是不同的西罗

p-子群相矛盾。

若H₁,H₂,· · ·,Hₛ 是 Sₚ 的所有不同的西罗p-子群,那么每个Hᵢ=〈σᵢ〉,其中 σᵢ 为一p轮换。因为Hᵢ∩Hj={(1)},i ≠ j,可知Sₚ的所有阶为p的元素个数为 s · (p – 1)。因为阶为p的元素必定是某个p轮换,这就要求我们来求 Sₚ 的所有不同的p轮换。

因为形如 (α₁,α₂,· · ·,αₚ) 的排列一共有p!个,对于每个特定的排列(α₁,α₂ · · · αₚ),当我们将它看成是p轮换σ=(α₁α₂ · · · αₚ) 时,它将有且只有p种相等的形式,即:

σ=(α₁α₂ · · · αₚ)=(α₂α₃ · · · αₚα₁)=· · ·= (αₚα₁α₂ · · · αₚ₋₁),从而所有不同的p轮换只可能有

p!/p=(p – 1)!个。

结合上面的讨论,我们已经可以得出等式s · (p – 1)=(p – 1)!即s=(p – 2)!。也就是说 Sₚ的所有不同的西罗p-子群的个数为

(p – 2)!个。但是根据西罗第三定理,我们知道s≡1 (mod p),从而(p – 2)

!≡1 (mod p),两边同时乘以

P-1(因为显然的p – 1 ≡ p – 1(mod p)),得到

(p – 1)!≡ p – 1 ≡ –1(mod p),这就是Wilson定理了。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

有爱了不起呀,就是了不起! 连载中
有爱了不起呀,就是了不起!
四室
短篇集合。
4.4万字4周前
凡神之别 连载中
凡神之别
槐央池
在成都飞扬的。荒漠中占了一位少年,他掀开了自己的头出纱。他的神明也即将到来。
0.1万字4周前
黎桐家来了新人?-d015 连载中
黎桐家来了新人?-d015
0.1万字4周前
我家血仆有点强 连载中
我家血仆有点强
早去
夜黎安为了获得“神心”竟不择手段,结果还把自己给赔进去了!
5.5万字4周前
隐世华族1 连载中
隐世华族1
结恋之时
你的选择,决定我们的命运!
0.4万字4周前
猪猪侠之空星域之旅 连载中
猪猪侠之空星域之旅
任骨芸
猪猪侠和超星五灵侠其余人以及迷糊博士神秘消失竞速星的朋友们为了找他来到了猪猪侠赛车生涯的起源之地——空星域却不知······“我是空星域的冠......
0.2万字4周前