数学联邦政治世界观
超小超大

利用S_p证明Wilson定理

问题:p是素数,计算Sₚ,中Sylow p-子群的个数。由此证明Wilson定理:

(p – 1)!≡ —1 (mod p)。

题目几乎已经将证明方法写了出来。因为|Sₚ|=p!=p(p – 1)!,由于(p–1)!中没有素

因子p,由西罗定理,Sₚ 有p阶的西罗p-子群H,因为素数阶的群都是循环群,故每个西罗p-子群H=〈α〉,其中a是某个p元置换,且αᵖ=(1)。接下来的证明将会表明,a一定是某个p轮换。

对于任何一个n轮换σ=(α₁α₂ · · · αₙ),易知

σⁿ=(α₁α₂ · · · αₙ)ⁿ=(1),而且若

k<n,则 σᵏ(α₁)=αₖ₊₁≠α₁,所以

σᵏ≠(1),于是n轮换σ的阶为n。反过来,若一个n元置换τ的阶为n,取τ的轮换分解式τ=σ₁σ₂ · · · σₜ,其中各 σᵢ 为一长度小干等于n的轮换,所有轮换长度之和等于n,且各轮换两两不交,从而两两可交换,那么τᵏ=σᵏ₁σᵏ₂ · · · σᵏₜ,∀k ≥ 1,根据已进行过的讨论可得出 τ 的阶等于各 σᵢ 的阶的最大值,因为 τ 的阶为n,所以 t=1 ,且 τ=σ₁ 为一n轮换。

这样,Sₚ的每个西罗p-子群都由某个p轮换生成。如果 H₁,H₂ 为两个不同的西罗p-子群,容易证明H₁∩H₂=f{(1)},这是因为,若某个(1) ≠ α ∈ H₁ ∩ H₂,因为 H₁ 的阶为p为一素数,所以a生成H₁,从而H₁=〈α〉,但因为α ∈ H₂,很自然有

〈α〉⊂ H₂,也即H₁ ⊂ H₂,二者阶相等,从而 H₁=H₂,这与二者是不同的西罗

p-子群相矛盾。

若H₁,H₂,· · ·,Hₛ 是 Sₚ 的所有不同的西罗p-子群,那么每个Hᵢ=〈σᵢ〉,其中 σᵢ 为一p轮换。因为Hᵢ∩Hj={(1)},i ≠ j,可知Sₚ的所有阶为p的元素个数为 s · (p – 1)。因为阶为p的元素必定是某个p轮换,这就要求我们来求 Sₚ 的所有不同的p轮换。

因为形如 (α₁,α₂,· · ·,αₚ) 的排列一共有p!个,对于每个特定的排列(α₁,α₂ · · · αₚ),当我们将它看成是p轮换σ=(α₁α₂ · · · αₚ) 时,它将有且只有p种相等的形式,即:

σ=(α₁α₂ · · · αₚ)=(α₂α₃ · · · αₚα₁)=· · ·= (αₚα₁α₂ · · · αₚ₋₁),从而所有不同的p轮换只可能有

p!/p=(p – 1)!个。

结合上面的讨论,我们已经可以得出等式s · (p – 1)=(p – 1)!即s=(p – 2)!。也就是说 Sₚ的所有不同的西罗p-子群的个数为

(p – 2)!个。但是根据西罗第三定理,我们知道s≡1 (mod p),从而(p – 2)

!≡1 (mod p),两边同时乘以

P-1(因为显然的p – 1 ≡ p – 1(mod p)),得到

(p – 1)!≡ p – 1 ≡ –1(mod p),这就是Wilson定理了。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

花之茗,渡花生 连载中
花之茗,渡花生
卡特栗娜
以花之名,渡花生(声)
1.7万字11个月前
无尽的冬季 连载中
无尽的冬季
高中函数
“无尽的冬季,永远不会来临的夏天”“冬九,我会带你走进夏天”“我在雪山的尽头等着你”“我们死于烈焰,可灵魂不灭,我们终将烈火重生”“浑浊腐烂......
1.1万字11个月前
轮回五:火海 连载中
轮回五:火海
酒生清栀
“我属于您。”有记忆的时候,这个人就如影随形地跟在身后。为此我被玩伴们在私下嬉笑了很多次,说“大小姐就是尊贵啊”。小时候和他置气过很多次,结......
1.5万字11个月前
十二星之不是!你们当时都藏的这么严实的吗?? 连载中
十二星之不是!你们当时都藏的这么严实的吗??
Joker寒
第一个小世界十二星座的小故事司繁为救苍生,星魂献祭,转世轮回,本可以平平静静的过完一生,但是又主动的卷入新的风波,当年的真相渐渐浮出水面,同......
17.7万字11个月前
蜜虫 连载中
蜜虫
独行飞侠
所有蜜虫中最难养的是续命蜜。它是以人的心头血为食,以最痛苦的记忆为趣,养够81天,在入他体内方可续命。从此他可有二十年逍遥时光,而他醒来却不......
10.7万字11个月前
从不长高的剑祖 连载中
从不长高的剑祖
珊瑚啾啾
【签约作品,禁止抄袭,禁止在评论区做出不良事情,日更】作为从不长高的三界公认第一剑祖,所有龙傲天属性及一身的他,长不高了,修炼了,成龙傲天了......
14.5万字11个月前