数学联邦政治世界观
超小超大

有限集基数 (2-1)

(笔记来自 Kαrel 和 Herbert 。)

基数

• 基数表示有限集合中元素个数,并通过比较基数大小来判断有限集合间的大小关系。

• 无限集合的元素无法“数清”但至少可以判断肯定多于任何有限集的元素个数。

• 无限集合间的相等关系无法通过元素个数比较,但可以通过找双射函数来实现。(若存在双射函数,则两集合等势)

【例1】(0,1) 与实数集 R 等势:存在双射函数

1 1

f ── — ─,

1 — x x

满足 (0,1) 的实数跟所有实数之间的一一对应关系。

. .

0 1

【例2】N 与 N² 等势:存在双射函数 f(x)=x²

(上两个例子表明,无限集与其真子集等势。)

有限集基数算律

加法运算: |A|=κ |B|=λ,且A∩B=ф ⇒ κ+λ=|A∪B| (基数加法满足交换律和结合律。)

乘法运算:

|A|=κ |B|=λ ⇒ |A × B|=κ • λ。

(基数加法满足交换律、结合律和分配律)

定理:若集合 |A|=|A'| |B|=|B'|,则 |A × B|=|A' × B'|

证明:集合A 与 A' 等势 ⇒ 存在双射函数 f:A → A',同理,存在双射函数 g:B → B' ,定义函数 h:A × B → A' × B', h(α,b)=(f(α),g(b)) ⇒ h 是 A × B 到 A' × B' 的双射函数,因此 |A × B|=|A' × B'| 。

例题: κ+κ=2 • κ

证明:若|A|=κ,则 2 • κ 相当于 {0,1} × A 的基数。 {0,1} × A=({0} × A)∪({1} × A),且 ({0} × A)与 ({1} × A) 不相交, 丨{0} × A|=|{1} × A|=κ,因此 丨{0,1} × A|=κ+κ=2 • κ 。

推论:若 κ ≥ 2 ,则 κ+κ ≤ κ • κ 。

指数运算:若 |A|=κ ,则 |B|=λ ,则|Aᴮ|=κλ。( Aᴮ:从 B 到 A 的函数; |Aᴮ|=κλ :从 B 到 A 的所有函数的数量)

定理:若集合 |A|=|A'| |B|=|B'| ,则 |Aᴮ|=|A'ᴮ'|

证明: 集合A 与 A' 等势 ⇒ 存在双射函数 f:A → A' ,同理,存在双射函数 g:B → B'。 令 k 代表从 B 到 A 的一个函数,即 k∈Aᴮ ,令函数 H Aᴮ → A'ᴮ',则 H(k)=f • k • g⁻¹, H 为 Aᴮ 到 A'ᴮ' 的双射函数。

k

A ← B

f↓ ↓g

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

潜执之分 连载中
潜执之分
小小馨馨
虐文小说
0.5万字1年前
金凌:只对你一人倾心 连载中
金凌:只对你一人倾心
秋叶凌玖
有三对主cp的喜欢一个人,就是一个人。只喜欢他/她一个,因为一世一双人她南宫婷依,世家小姐排行第三,南宫世家的三小姐,医者仁心,桀骜不灭。他......
3.0万字1年前
上神修仙录 连载中
上神修仙录
墨染不羡仙
[已完结]失落已久的魔族公主,意外成为上仙云锦的徒弟,她爱慕他、念他,甚至愿意为了他付出生命。云锦:“我喜欢你,生生世世,我只有你一个人,只......
12.9万字1年前
幸运签我的后宫生活之旅 连载中
幸运签我的后宫生活之旅
天也佑我挽柒
一个普通的少年,不小心遭遇了一次意外,当场去世随后一位神仙来,指导他去一片新大陆,他不知道的是这一切都是上天命中注定的,就此少年开始他的后宫......
5.2万字1年前
浅情人不知迷途归思云 连载中
浅情人不知迷途归思云
逗逗飞了
“阿浅,我肮脏恶劣,你是我的黎明曙光。”——边伯贤“纵使我把心掰碎了给你,你可曾心疼过我”——边伯贤“我想去带你看繁华盛景,许你一个永恒。”......
0.0万字1年前
陈情令——魏无羡重生之守护 连载中
陈情令——魏无羡重生之守护
魏无靖
这一辈子一定要保护好师姐,虞夫人,江叔叔,温情,温宁
0.3万字1年前