数学联邦政治世界观
超小超大

格的笛卡尔积的同余关系

设L,M 为两个格,定义 (L × M,∧,∨) 为(l₁,m₁) ∧ (l₂,m₂)=(l₁∧l₂,m₁∧m₂),(l₁,m₁)∨(l₂,m₂)=(l₁∨l₂,m₁∨m₂)。

定理:假设ψ 是 L × M 的同余关系,那么存在 L,M 上的同余关系 α,β 满足 α ⨂ β=ψ ,其中 α ⨂ β={[α,x),(b,y)]:(α,b)∈α,(x,y)∈β} 。反过来,对于任意 L,M 上的同余关系 α,β , α ⨂ β 都是 L × M 上的同余关系。

证明:首先证明第二个定理。假设[(α,x),(b,y)] ∈α ⨂ β,任选 (c,z)∈L × M,求 [(α∧c,x∧z),(b∧c,y∧z)]∈α ⨂ β。因为 (α,b)∈α → (α∧c,b∧c)∈α且 (x,y)∈β →(x∧z,y∧z)∈β,那么 [(α∧c,x∧z),(b∨c,y∨z)]∈α ⨂ β;同理可证 [(α∨c,x∨z),(b∨c,y∨z)]∈α ⨂ β,因此对于任意 L,M 上的同余关系 α,β ,α ⨂ β 都是 L × M 上的同余关系。

再证明第一个定理。假设ψ 是 L × M 的同余关系,定义 (α,b)∈α↔∃x∈M,[(α,x),(b,x)]∈ψ,注意到如果 [(α,x),(b,y)]∈ψ,那么有 [(α∧(α∨b),x∧x∧y),(b∧(α∨b),y∧x∧y)]∈ψ,即 [(α,x∧y),(b,x∧y)]∈ψ,进一步可得 [(α,y),(b,y)]∈ψ。因此我们有如下定理:如果存在 x,y∈M 满足[(α,x),(b,y)]∈ψ ,那么对于任意 z∈M 都有 [(α,z),(b,z)]∈ψ。因此我们可以把 α 的定义改为 (α,b)∈α ↔ ∀x ∈ M,[(α,x),(b,x)]∈ψ。

下面求α 是 L 的同余关系。由于 (α,b)∈α 蕴含 ∀x ∈ M,[(α,x),(b,x)]∈ψ,那么 [(α∧c,x),(b∧c,x)]∈ψ 和 [(α∨c,x),(b∨c,x)]∈ψ 成立,因此 α 是 L 的同余关系。同理,我们可以根据 ψ 诱导出 M 上的同余关系 β 。

下面证明ψ=α ⨂ β 。假设 [(α,x),(b,y)]∈ψ,那么 [(α,x),(b,x)]∈ψ 和 [(α,x),(α,y)]∈ψ,因此 (α,b)∈α 和 (x,y)∈β,可得 ψ ⊆ α ⨂ β;假设 (α,b)∈α 和 (x,y)∈β ,那么 (x∧y,x)∈β 和 (x∧y,y)∈β,因此 [(α,x∧y),(α,x)]∈ψ 和 [(b,x∧y),(b,y)]∈ψ 与 [(α,x∧y),(b,x∧y)]∈ψ,由 ψ 的传递性可得 [(α,x),(b,y)]∈ψ,即 ψ ⊇ α ⨂ β ,因此 ψ=α ⨂ β 。

上面的定理表明α,β 和 ψ 是一一对应关系,因此如果 L × M 的只有奇数个同余关系,那么 L,M 至少有一个是只有一个元素的格,因为两个及以上元素的格 L 至少有两个同余关系:相等关系和 L² 。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

修仙飞升:人生模拟 连载中
修仙飞升:人生模拟
百变小优
宝子们~注意:这是女频模拟器白倩倩只不过是看了一篇女强小说吐槽几句莫名其妙穿书。穿到谁不好偏偏穿到一个跟她同名同姓从小被人换了人生的白倩倩身......
2.7万字8个月前
新纪:潮起潮落 连载中
新纪:潮起潮落
阿该更新了吗
潮起潮落的时代,神明不能救世人。疯狂的年代,异者和人类不分种族的发出哀嚎。恰如阵雨捶打大地。“呼……”少女收起雨伞和发射器,只撇了怪物一眼便......
0.6万字8个月前
终极一班之敏敏穆尔特 连载中
终极一班之敏敏穆尔特
黑二妹爱吃
当敏敏穆尔特穿越终极一班会发生怎样的故事?聪明人与聪明人之间的较量!敏敏穆尔特❤️雷克斯
3.6万字7个月前
汪汪队立大功奇毛 连载中
汪汪队立大功奇毛
白汐鱼
当汪汪队里最强的两只狗狗碰撞后后擦出怎样的火花呢?不喜勿喷,谢谢渣渣文笔
0.3万字7个月前
我的师父是月老 连载中
我的师父是月老
花兮儿
我叫花乐瑶,一株曼珠沙华修炼成仙,不过我怎么莫名其妙就成了冥界公主?阎王还追着我叫皇儿?这也太诡异了吧!当然,这一切都无法阻止师父对我的喜爱......
6.7万字7个月前
以你为由,冠你之名,一莘一逸 连载中
以你为由,冠你之名,一莘一逸
枳笙
该同人题材来自于漫画《甜美的咬痕》,漫画作者:伊凯&锐思两位大大。讲述一位不可一世的血族王子,恋上看似卑微,却不容小觑的血仆少女。这是一场人......
5.4万字7个月前