数学联邦政治世界观
超小超大

特殊篇章(数学定理)一 (8-1)

介绍:Gauss-Bonnet定理的外蕴和内蕴证明

本文给出欧式空间 ℝ³ 中光滑参数曲面上Gauss-Bonnet定理的外蕴和内蕴证明, 通过比较这两种证明方法, 我们看到在一般的Riemann流形上引入联络的必要性. 我们采用Einstein求和约定, 即相同的两个指标一个为上标另一个为下标时意味着对该指标在其取值范围内求和. 当不满足求和约定时, 我们将明确写出求和号. 此外, 我们约定指标 α,β,γ,⋯的取值范围为 {1,2}; 指标 i,j,k,⋯ 的取值范围为 {1,2,3}.

1. Gauss曲率

给定欧式空间 ℝ³ 中的曲面 S,设 U 是它的一个坐标邻域, S 在 U 上的坐标表示为 r=r(x¹,x²). 在坐标邻域 U 上取定向相符的光滑正交标架场 {r;e₁,e₂,e₃} (其中 e₃=n 是曲面的单位法向量), 其运动方程可表示为

dr=ωαeα,

deᵢ=ωʲᵢeⱼ,ωʲᵢ+ωⁱⱼ=0.

其中微分形式 ωα 和 ωʲᵢ 满足结构方程

(1){dω¹=ω²∧ω¹₂,

{dω²=ω¹∧ω²₁.

(2){dω²₁=ω³₁ ∧ω²₃ ,

{dω³₁=ω²₁∧ω³₂,

{dω³₂=ω¹₂∧ω³₁.

由于 dω²₁ 是一个二次微分形式, 它可以由 ω¹∧ω² 线性表示, 我们断言线性表示的系数为负的Gauss曲率, 即

(3)dω²₁=−Kω¹∧ω².

为了证明这一点, 考虑 S 在 U 上的自然标架场 {r;r₁,r₂,n},其中 r₁=∂r/∂x¹ 并且 r₂=∂r/∂x². 由于 r₁,r₂ 和 e₁,e₂ 都是曲面 S 的切平面内线性无关的向量,因此我们有

rα=αβαeᵦ.

另一方面,由

dr=ωαeα=rαdxα

得到

ωα=ααᵦdxβ.

由此我们得到

(4)ω¹∧ω²=det(αβα)dx¹∧dx²

r₁∧r₂

=───dx¹∧dx².

e₁∧e₂

等式(4)的最右端恰好是坐标 x¹,x² 增加 dx¹,dx² 时对应的曲面面积微元. 同样地, 利用 dn 在正交标架和自然标架下的表示,我们得到

n₁∧n₂

(5)ω¹₃∧ω²₃= ───dx¹∧dx²,

e₁∧e₂

其中 n₁=∂ₙ/∂x¹ 并且 n₂=∂ₙ/∂x². 等式(5)的右边恰好是对应的曲面的法向量在单位球面上扫过的面积微元. 根据Gauss曲率的原始定义, 我们得到

(6)K=n₁∧n₂

─────dx¹∧dx²

e₁∧e₂

K=─────────

r₁∧r₂

───dx¹∧dx²

e₁∧e₂

ω¹₃∧ω²₃

= ─────.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

昼柳尘萧 连载中
昼柳尘萧
云暝殇乐
[双男主,玄幻]一千年过去,双界失去了首领和灵主,混乱一片,陈眄明决要统一三界,但是又出现个简涔,一直没发现他的真实身份,针锋相对中完成统一......
1.2万字9个月前
宿主我啊被生子系统绑定了捏 连载中
宿主我啊被生子系统绑定了捏
要守约吖
林好好意外被生子系统绑定,为没有生育能力的男主或者男配生下孩子,只要完成布置的任务,就可以回到原来的世界,并可以实现一个愿望,为了能够和纸片......
6.9万字8个月前
科摩多大陆 连载中
科摩多大陆
焉非魚
单字一个6,想到啥写啥本文想法奇妙,作者可能会挖很多坑,入坑请慬慎~
6.3万字8个月前
甜爱:小甜熊恋爱手册 连载中
甜爱:小甜熊恋爱手册
一只橘a
主1:身高155cm的小甜熊(肖恬馨)是一个无敌爆炸可爱黏人的小萌妹,渴望遇到一个高大帅气爱他的男盆友~偶然的机会使他与已经活了620年的许......
9.5万字8个月前
快穿:宿主她是真的野 连载中
快穿:宿主她是真的野
二三小团籽
【3.9签约成功,禁一切抄袭行为】【1V1双洁,男主灵魂同一个人】【人物形象多样,无论是现言、古言、民国还是修仙、末世,总有你想看的!】南汐......
11.4万字8个月前
爱恨悲苦交集----浩麟 连载中
爱恨悲苦交集----浩麟
吴曦灵
简介正在更新
1.6万字8个月前