数学联邦政治世界观
超小超大

特殊篇章(数学定理)一 (8-1)

介绍:Gauss-Bonnet定理的外蕴和内蕴证明

本文给出欧式空间 ℝ³ 中光滑参数曲面上Gauss-Bonnet定理的外蕴和内蕴证明, 通过比较这两种证明方法, 我们看到在一般的Riemann流形上引入联络的必要性. 我们采用Einstein求和约定, 即相同的两个指标一个为上标另一个为下标时意味着对该指标在其取值范围内求和. 当不满足求和约定时, 我们将明确写出求和号. 此外, 我们约定指标 α,β,γ,⋯的取值范围为 {1,2}; 指标 i,j,k,⋯ 的取值范围为 {1,2,3}.

1. Gauss曲率

给定欧式空间 ℝ³ 中的曲面 S,设 U 是它的一个坐标邻域, S 在 U 上的坐标表示为 r=r(x¹,x²). 在坐标邻域 U 上取定向相符的光滑正交标架场 {r;e₁,e₂,e₃} (其中 e₃=n 是曲面的单位法向量), 其运动方程可表示为

dr=ωαeα,

deᵢ=ωʲᵢeⱼ,ωʲᵢ+ωⁱⱼ=0.

其中微分形式 ωα 和 ωʲᵢ 满足结构方程

(1){dω¹=ω²∧ω¹₂,

{dω²=ω¹∧ω²₁.

(2){dω²₁=ω³₁ ∧ω²₃ ,

{dω³₁=ω²₁∧ω³₂,

{dω³₂=ω¹₂∧ω³₁.

由于 dω²₁ 是一个二次微分形式, 它可以由 ω¹∧ω² 线性表示, 我们断言线性表示的系数为负的Gauss曲率, 即

(3)dω²₁=−Kω¹∧ω².

为了证明这一点, 考虑 S 在 U 上的自然标架场 {r;r₁,r₂,n},其中 r₁=∂r/∂x¹ 并且 r₂=∂r/∂x². 由于 r₁,r₂ 和 e₁,e₂ 都是曲面 S 的切平面内线性无关的向量,因此我们有

rα=αβαeᵦ.

另一方面,由

dr=ωαeα=rαdxα

得到

ωα=ααᵦdxβ.

由此我们得到

(4)ω¹∧ω²=det(αβα)dx¹∧dx²

r₁∧r₂

=───dx¹∧dx².

e₁∧e₂

等式(4)的最右端恰好是坐标 x¹,x² 增加 dx¹,dx² 时对应的曲面面积微元. 同样地, 利用 dn 在正交标架和自然标架下的表示,我们得到

n₁∧n₂

(5)ω¹₃∧ω²₃= ───dx¹∧dx²,

e₁∧e₂

其中 n₁=∂ₙ/∂x¹ 并且 n₂=∂ₙ/∂x². 等式(5)的右边恰好是对应的曲面的法向量在单位球面上扫过的面积微元. 根据Gauss曲率的原始定义, 我们得到

(6)K=n₁∧n₂

─────dx¹∧dx²

e₁∧e₂

K=─────────

r₁∧r₂

───dx¹∧dx²

e₁∧e₂

ω¹₃∧ω²₃

= ─────.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

管理局的日常生活 连载中
管理局的日常生活
江无忌
0.8万字1年前
伽小婉联合爆迫星星球 连载中
伽小婉联合爆迫星星球
是凌风呀
我之前不听劝看了S18就那句“你能忪开我的手吗?”不是就你忪手是吧!炸了!把星星球炸了!
0.1万字1年前
莫殇离 连载中
莫殇离
静若韵
【已签约】当从未下过灵仙山的天真女弟子泠洛姳遇到伪装成人类的魔界魔君时,不是遇到了魔头,而是收了个小跟班一般…不仅对她惟命是从,并且还几次三......
12.2万字1年前
快穿之功成身退 连载中
快穿之功成身退
稷昶
许久未更,惭愧。祝福读者们未来更好,前途似锦。禁未成年。
3.8万字1年前
《新环珠格格》 连载中
《新环珠格格》
小燕子小妻子
嗯,作品。三四天一更新。
0.6万字1年前
第一杀手:废材大小姐 连载中
第一杀手:废材大小姐
茉痴
二十一世纪王牌杀手错信感情,被挚爱之人亲手送向地狱,却不曾想凤凰涅槃,浴火重生。一朝穿越竟成了远近闻名的废材凤家嫡女。废材?不存在的,我是全......
4.1万字1年前