数学联邦政治世界观
超小超大

终极L(第二版本) (3-1)

猜想中的兼容性最强的德尔凝聚性定理和延森覆盖定理均在其中成立的内模型,包含所有大基数的终极内模型 -- “哥德尔纲领”的最终完成:将会解决所有的在力迫下呈现独立性的所有命题。

为了构造它,需要一个包含超紧致基数的内模型

假设 N 为一个超紧致基数 δ 的 weak extender model 那么 N 拥有 δ - covering property。

Proof.(draft) 令 σ⊂N 为满足 |σ|<δ .

根据 N⊨ZFC 那么可以归纳为这样一种情况 σ⊂Ord .

令 λ>δ 有 σ⊂λ . 一个 U 为 Pδ(λ) 上的 δ - 完备主精细超滤使得有 N∩Pδ(λ)∈U .

由于 U 是精细以及 δ - 完备的那么 {τ∈Pδ(λ)|σ⊂τ}∈U 必须得以存在 τ∈Pδ(λ)∩N 使得 σ⊂τ 成立。

一个内模型是终极L也可证超幂公理UA+地面公理GA+存在一个最小强紧致基数成立。

一个内模型是终极L必须是基于策略分支假设SBH。

如果Ω猜想在所有已知的大基数公理下都成立,那就是Ω猜想在V中成立的强烈依据。

而武丁有关终极L的研究表明,所有的证据都显示,没有任何已知的大基数公理会否证猜想。

我们以下简述这一重要的思想。

(在以下的讨论中,所有未注明的定理和定义都属于武丁。)

如果存在可测基数,则V≠L,所以L虽然具有很好的结构性质,并且V=L可以解决包括CH在内的独立性问题,但它不可能是新公理的候选,L与V相差太远了。

库能的L[U]可以容纳可测基数,在这个意义上比L更接近V但是,[中只有一个可测基数,它甚至不能容纳第二个可测基数,更不必说更大的基数了。

所以,最终的任务就成了构造一个可以容纳所有大基数的类L结构,人们将这样的结构称为“终极L”。

这看起来是不能完成的任务,因为在构造容纳大基数的内模型的过程中,人们发现每向上一步,都只能得到仅仅包含一个相应大基数的模型,要想容纳所有的大基数,我们有无穷多个内模型需要构造。

但是,武丁的一个重要发现彻底改变了这种情形,这又需要一些新的数学定义:

定义3.3假设N是一个ZFC的模型,δ是一个超紧基数,如果对任意λ>δ,存在P_δ(λ)一个完全的正则精良超滤U满足:

(1) P_δ(λ)∩N∈U;

(2)U∩N∈N,

就称N是关于δ是超紧致基数的弱扩张子模型(weak extender model )

弱扩张子模型之所以重要,是因为它有我们需要的性质。

首先,它十分接近就我们目前的问题而言,这意味着它有正确的基数概念。

定理3.4假设N是关于是超紧致基数的弱扩张子模型,并且在N中,λ>δ是正则基数,则在V中,cf(λ)=|λ|。

特别地,如果入在V中依然是基数,则它在V中是正则的。

推论3.5假设N是关于是超紧基数的弱扩张子模型,并且在V中,γ>δ是奇异基数,则

(1)λ在N中是奇异基数;

(2)(γ⁺)ᴺ=γ⁺,即N能正确地计算奇异基数的后继。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

缘分?还是巧合? 连载中
缘分?还是巧合?
萧蓝星
双男主的,敬请期待,头像是小红书上的哦
1.7万字4周前
糟糕身份暴露! 连载中
糟糕身份暴露!
受伤的他
0.6万字4周前
望春花,你本多情 连载中
望春花,你本多情
该用户已注销
『已签约,禁止搬运』cp随便组,羽笙和霖麒CP就别乱组,有原型不喜勿喷
22.4万字4周前
池渊之恋 连载中
池渊之恋
墨染纤云
在疯狂的压榨下,成就了柳漓殇,冷血无情的柳故渊事态淡凉,我们本就不凡,何来平庸,我们更不能止步于此“为什么,为什么要杀了我”“天道无情,而我......
9.2万字4周前
三生三世枕上书后续(自创) 连载中
三生三世枕上书后续(自创)
墨灞茇
自己看内容!爱追三生三世枕上书剧的人可以看一看,或者说如果觉得在《三生三世十里桃花》里面凤九被虐的很惨的人可以看一看。
1.9万字4周前
君心几许 连载中
君心几许
管姑娘
说来奇怪,三界众神皆知太子殿下泠川性孤高,不愿与人多言。怎的偏偏一遇上拾芸仙尊,就不再高冷了?“山有木兮木有枝,心悦君兮君不知。”“山有木兮......
6.0万字4周前