数学联邦政治世界观
超小超大

特殊篇章(数学解释)十三 (2-1)

无端点线性稠密序不是κ范畴的

我们称一个可数语言的理论 T 是 ω 范畴的,当且仅当,对于任意可数模型 N,M ⊨ T 都有 M≅N 。

定理:无端点线性稠密序理论 T 是 ω 范畴但不是 κ 范畴的,其中 κ>ω 。

证明:不妨假设 κ=c 。由于 ℝ⊨T 且 |R|=c ,我们就用实数集 R 来证明定理(如果 κ<c 的话,向有理数集中加入 κ 个无理数就好)。任选 f∈2ω ,定义 f′=∏ₙ<ω{n}×𝕬f(ₙ) ,其中 𝕬₀=Q 且 𝕬₁=R ;定义 f′ 上的字典序为: (i,α)<f′(j,b) 当且仅当 i<α 或者 i=j∧α<𝕬f(ᵢ)b 。 f′ 可以理解为将 ℚ,ℝ 按照 f 规定的次序串接起来。不难看出 f′ 仍然是无端点线性稠密序。

下面证明有 c 个不同构的 f′ 。首先注意到 ℝ 并不同构于 2 个 R 的串接,即 ℝ≇{(0,r),(1,s):r,s∈R}=𝓞 :如果 ℝ≅𝓞 ,令 f:𝓞 → ℝ 是同构映射,那么存在 α∈R 满足 ∀r∈R,f(0,r)<α ;由于实数集的完备性,设 α 是 {f(0,r):r∈R} 的上确界,此时无论 ∃r∈R,α=f(0,r) 还是 ∃r∈R,α=f(1,r) 都与 R 是无端点线性稠密序矛盾,因此 ℝ≇𝓞 (这就是为什么我们特意选用 ℝ 而不是任意基数为 c 的无端线性稠密序, ℝ 的序完备性真的好用;注意到这里我们已经证明了 T 不是 c 完备的了)。用相同方法可证 ℝ 不同构于 δ 个 R 的串接,其中 2 ≤ δ ≤ ω 。其次注意到任意可数个有理数集的串接仍然是可数稠密集、仍然与有理数集同构,因此不妨把 δ 个有理数集的串接看作是一个有理数集,其中 2 ≤ δ ≤ ω 。根据这两个引理不难看出 c 个不同构的 f′ ,定理成立。 ⊣

引理:假设 𝕸 是非标准算术模型,那么 𝕸≅N∗(𝕺×ℤ) ,其中 ∗ 表示串接、 𝕺 是一个无端线性稠密序、ℤ 是整数集。

证明:只需证明 𝕺 的稠密性。任选两个 ℤ 链 Z₁,Z₂ 且 Z₁ 在 Z₂ 之前,任选 c₁∈Z₁,c₂∈Z₂ ,不妨设 c₁,c₂ 都是偶数,那么 c₁<

c₁+c₂ c₁+c₂

────<c₂且 ────∉Z₁,Z₂,那么

2 2

c₁+c₂

────

2

所属的 ℤ 链就在 Z₁,Z₂ 之间,因此 𝕺 稠密。 ⊣

定理:假设 𝕸 是非标准算术模型且 |𝕸|=c ,那么 𝕸≅N∗(𝕺×ℤ) ,其中 ∗ 表示串接、 𝕺 是一个无端线性稠密序且 |𝕺|=c 但 𝕺 ≇ ℝ、 ℤ 是整数集。

证明:如果 𝕺≅ℝ ,现在任选非标准自然数 m ,注意到 {k×m:k∈ω} 在 𝕸 中有上界,因此存在实数 r 和对应的 ℤ 链 Zᵣ 满足 ∀x∈Zᵣ∀k(k×m<x) ,令 r 是所有这样的实数中最小的那个,注意到此时没有非标准自然数 n 满足 n×m>x ,其中 x∈Zᵣ 。任选 z∈Zᵣ 满足 m 不整除 z (尽管 z 大于所有 k×m ,但仍可能有非标准自然数 n 满足 n×m=z ),定义公式 ψ(x) 为“ x×m<z ”,那么 ψ(x) 就在 𝕸 中定义了自然数集,这与自然数集不可定义性矛盾,反证 𝕺 ≇ ℝ。⊣

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

顾流 连载中
顾流
小富婆呀
虐文,谨慎阅读,男女主双向爱情,女主楚夏莹从青春女大学生到风华绝代的霸总夫人,男主凌落尘从暖心男大蜕变成无敌偏执狂,不断在将要追妻与正在追妻......
0.9万字4周前
神秘研究所 连载中
神秘研究所
噩医
故事是作者的姐姐想出来的,但作者觉得这个故事只要是人就会喜欢,故事情节也许会有漏洞,但不要在意这些细节了嘛~
1.0万字4周前
桃花劫:美男如此多娇 连载中
桃花劫:美男如此多娇
李朵儿
(已签约/已完结)慕无霜,西昌国太皇女,上面有七个哥哥,还有八个爹爹,什么干爹干娘的还不算,个个宠的不像话。从小因为她母亲的渲染,慕无霜小小......
12.1万字4周前
赛与格2——真谛之光 连载中
赛与格2——真谛之光
逆转的老韩
经过上一次宇宙十二证的事件后,赛罗与格丽乔的感情越来越深厚,但是,那一天……格丽乔离赛罗而去,执着的追寻力量,激发了体内真谛之光的力量,逐渐......
5.6万字4周前
觊觎王叔美貌许久 连载中
觊觎王叔美貌许久
吃货部部长
人前战斗力爆表,腹黑毒舌的女帝,面对王叔,则是说不出话变成结巴的小姑娘。人前清冷禁欲的王叔,面对小姑娘,总是眉眼含笑,变成循循善诱的撩人高手......
1.2万字4周前
终极一班之落绾倾城 连载中
终极一班之落绾倾城
倾城繁花落
蓝斯洛!你疯了!--夏绾绾绾绾,我喜欢你!--流尘绾儿,不要离开我!--蓝斯洛绾绾,你和五熊都是我最在乎的人,任何人都不能伤害你们,哪怕是我......
1.6万字4周前