数学联邦政治世界观
超小超大

特殊篇章(数学解释)十三 (2-1)

无端点线性稠密序不是κ范畴的

我们称一个可数语言的理论 T 是 ω 范畴的,当且仅当,对于任意可数模型 N,M ⊨ T 都有 M≅N 。

定理:无端点线性稠密序理论 T 是 ω 范畴但不是 κ 范畴的,其中 κ>ω 。

证明:不妨假设 κ=c 。由于 ℝ⊨T 且 |R|=c ,我们就用实数集 R 来证明定理(如果 κ<c 的话,向有理数集中加入 κ 个无理数就好)。任选 f∈2ω ,定义 f′=∏ₙ<ω{n}×𝕬f(ₙ) ,其中 𝕬₀=Q 且 𝕬₁=R ;定义 f′ 上的字典序为: (i,α)<f′(j,b) 当且仅当 i<α 或者 i=j∧α<𝕬f(ᵢ)b 。 f′ 可以理解为将 ℚ,ℝ 按照 f 规定的次序串接起来。不难看出 f′ 仍然是无端点线性稠密序。

下面证明有 c 个不同构的 f′ 。首先注意到 ℝ 并不同构于 2 个 R 的串接,即 ℝ≇{(0,r),(1,s):r,s∈R}=𝓞 :如果 ℝ≅𝓞 ,令 f:𝓞 → ℝ 是同构映射,那么存在 α∈R 满足 ∀r∈R,f(0,r)<α ;由于实数集的完备性,设 α 是 {f(0,r):r∈R} 的上确界,此时无论 ∃r∈R,α=f(0,r) 还是 ∃r∈R,α=f(1,r) 都与 R 是无端点线性稠密序矛盾,因此 ℝ≇𝓞 (这就是为什么我们特意选用 ℝ 而不是任意基数为 c 的无端线性稠密序, ℝ 的序完备性真的好用;注意到这里我们已经证明了 T 不是 c 完备的了)。用相同方法可证 ℝ 不同构于 δ 个 R 的串接,其中 2 ≤ δ ≤ ω 。其次注意到任意可数个有理数集的串接仍然是可数稠密集、仍然与有理数集同构,因此不妨把 δ 个有理数集的串接看作是一个有理数集,其中 2 ≤ δ ≤ ω 。根据这两个引理不难看出 c 个不同构的 f′ ,定理成立。 ⊣

引理:假设 𝕸 是非标准算术模型,那么 𝕸≅N∗(𝕺×ℤ) ,其中 ∗ 表示串接、 𝕺 是一个无端线性稠密序、ℤ 是整数集。

证明:只需证明 𝕺 的稠密性。任选两个 ℤ 链 Z₁,Z₂ 且 Z₁ 在 Z₂ 之前,任选 c₁∈Z₁,c₂∈Z₂ ,不妨设 c₁,c₂ 都是偶数,那么 c₁<

c₁+c₂ c₁+c₂

────<c₂且 ────∉Z₁,Z₂,那么

2 2

c₁+c₂

────

2

所属的 ℤ 链就在 Z₁,Z₂ 之间,因此 𝕺 稠密。 ⊣

定理:假设 𝕸 是非标准算术模型且 |𝕸|=c ,那么 𝕸≅N∗(𝕺×ℤ) ,其中 ∗ 表示串接、 𝕺 是一个无端线性稠密序且 |𝕺|=c 但 𝕺 ≇ ℝ、 ℤ 是整数集。

证明:如果 𝕺≅ℝ ,现在任选非标准自然数 m ,注意到 {k×m:k∈ω} 在 𝕸 中有上界,因此存在实数 r 和对应的 ℤ 链 Zᵣ 满足 ∀x∈Zᵣ∀k(k×m<x) ,令 r 是所有这样的实数中最小的那个,注意到此时没有非标准自然数 n 满足 n×m>x ,其中 x∈Zᵣ 。任选 z∈Zᵣ 满足 m 不整除 z (尽管 z 大于所有 k×m ,但仍可能有非标准自然数 n 满足 n×m=z ),定义公式 ψ(x) 为“ x×m<z ”,那么 ψ(x) 就在 𝕸 中定义了自然数集,这与自然数集不可定义性矛盾,反证 𝕺 ≇ ℝ。⊣

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

万分之一于你 连载中
万分之一于你
Ther.D
1.失约/校园/1v1/be2.末世/未来/1v1/be3.巨龙的宝藏/1v1/he
7.9万字4周前
紫衣宫铃 连载中
紫衣宫铃
莲晟燕君
她,现代异能杀手,黑白两道闻风丧胆的毒宫的宫主,却被自己最信任的两个人害死。她,四大家族紫家的唯一嫡系小姐,却是一个废材,爹娘失踪,被推入湖......
9.4万字4周前
TOP登陆少年:蝶恋 连载中
TOP登陆少年:蝶恋
予荷H
*幻世界*BE预警*TOP全员*想法大爆发一些穿插了各种元素的超绝小说(BE)喜欢的来#风之神—朱志鑫#顶流男歌手—张泽禹#雪之神—张极#克......
0.3万字4周前
铲妹封面铺 连载中
铲妹封面铺
许铲妹
下单看第一章
0.1万字4周前
我穿成了虐文女主 连载中
我穿成了虐文女主
王哥带你飞
【原创作品,禁止抄袭】半夜看完一部短篇虐文小说的叶盺对结局感到不满而意外穿到了书中可由于自己的到来产生了蝴蝶效应故事被她越带越偏。来这个世界......
10.2万字4周前
风起苍岚之吾凰在上:神归大地 连载中
风起苍岚之吾凰在上:神归大地
Mayic
风起苍岚加上吾皇在上是怎样的呢?人物交错纵横,剧情让你想不到
3.1万字4周前