数学联邦政治世界观
超小超大

(数学逻辑)篇章 (2-1)

Ω-逻辑具有Ω-完备的力量,引入Ω-猜想我们便可获得Ω-可判定 见证一切Ω-真命题是Ω-可证的

Ω-逻辑是用于谈论脱殊绝对性的无限逻辑

它的语义域是整个脱殊复宇宙,语法域是通用波莱尔集

通用波莱尔集的具体定义很复杂,简单来说就是ω^<ωₓ^λ<ω的某些子集,其中λ是某些序数,可以任意高所以Ω-逻辑的证明编码的基数可以是任意大的不可数基数

如果Ω-猜想成立,Ω逻辑使可以见证任意大的模型中包含的任意大基数,并将各种大基数公理以Wadge证明秩的深度分“强弱,重新衡量大基数的强度

武丁在Ω-猜想的视角下重新定义了“大基数”,他定义:一个性质是大基数性质,是在说:

1.P(a)断言了序数a是强不可达基数

2. P是Σ2的

3. P是不能被“小力迫”改变的

既然独立于ZFC的命题在一些模型里成立,在另一些模型里不成立,我们可以挑选一些自然的有意义的模型作为我们的检测模型(test structures ),研究在检测模型里成立的命题。

这在本质上是定义一种强逻辑,在所有检测模型里成立的命题就是强逻辑下有效的命题。

逻辑就是一种强逻辑,用它可以更好地刻画脱殊绝对性。

逻辑令T是语言 _set中的语句集,为语句,我们定义σ是T的Ω逻辑后承,符号表示为T⊨_Ωσ,如下:对任意完全布尔代数 ,任意序数α,如果Vαᴮ=T,则Vαᴮ⊨T.

特别地,如果T是空集,则σ称是Ω有效的,记作⊨_Ωσ

⊨_Ωσ这一概念的一个十分重要的性质是:假设存在武丁基数的一个真类,则关系⊨_Ω对任意脱殊扩张是绝对的,即对任意可数语句集T,任意语句σ,以及任意 :

T⊨_Ωσ当且仅当Vᴮ⊨“T⊨_Ωσ”

我们可以用以下概念重新塑述脱殊绝对性:

Ω完全的:

令T是理论而S是一语句集,则称T相对于S是Ω完全的当且仅当对任意σ∈S,T⊨_Ωσ或T⊨_Ω¬σ

所以,事实ω₁二就是说:假设存在武丁基数的真类,则ZFC相对于S={“H(ω₁)⊨σ”是语句}是Ω完全的。

但不幸的是,任何已知的大基数公理都不能生成对于H(ω₂)的完全理论,因此也不能证明H(2ω₂)的脱殊绝对性。

这正是关键的问题。

要定义Ω逻辑的证明概念⊢Ω需要很多技术的细节,我们在此省略。

事实上,一个证明是实数的一个子集,而重要是如果假设存在武丁基数的真类,也是脱殊不变的。

而且

可靠性假设ZFC,令T是可数理论,是语句φ,则T⊢_Ωφ蕴涵T⊨_Ωφ.

武丁还猜想在大基数假设下,Ω逻辑是完全的:

Ω-猜想:

假设ZFC并且存在武丁基数的真类,则对任意语句φ,蕴涵⊨_Ω φ

武丁还猜想在大基数假设下,Ω逻辑是完全的:

Ω-猜想:

假设ZFC并且存在武丁基数的真类,则对任意语句φ,蕴涵⊨_Ω φ

这被证明是一个强有力的命题,因为我们可以证明:

定理假设存在武丁基数的真类,并且假设猜想成立,则

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

总裁的愿望是?把我变成女生! 连载中
总裁的愿望是?把我变成女生!
yingying怪
啊,这我不知道写什么好,反正随便就对了
3.3万字4周前
一见顷馨 连载中
一见顷馨
西門若琦
守护你,我的救赎……新手写文欢迎指点,谢绝指指点点。
7.4万字4周前
快穿:系统逼的,男主饶命! 连载中
快穿:系统逼的,男主饶命!
夕艳大大
墨夕颜是一个女孩,醒过来便看到自己所在一个电子般的空间,感觉到自己的记忆有所缺失。  于是便和10.0系统小七穿梭在各个位面攻略男主。  收......
24.3万字4周前
废材公主:夫君多多追着跑 连载中
废材公主:夫君多多追着跑
富婆当道
意外穿越,慕凌月成为了当朝唯一的公主。可世人皆知,慕凌月此女相貌丑陋,痴傻无脑,实乃皇家一大笑话。对此,慕凌月置之惘然,该吃吃该喝喝,顺便打......
5.0万字4周前
修仙界败类 连载中
修仙界败类
墨染咸鱼
虽然我只是炼气期,但是别惹我!
3.7万字4周前
快穿我家宿主又A又撩 连载中
快穿我家宿主又A又撩
祭咕咕不是不羁祭
走过路过点开看看可好啊✔(//∇//)[喜欢]不喜欢可以左拐写文不易还请尊重作者谢谢暴躁小可爱×戏精帅上神1v1原创三观极正(大概是……吧?......
11.0万字4周前