数学联邦政治世界观
超小超大

Martin-Solovay马丁公理(假设与成立)篇章

Martin-Solovay定理:如果 MAκ 且 ⟨Dα:α<κ⟩ 是零测集序列,那么 ⋃α Dα 是零测集。

证明:根据零测集定义,只需证明对于任意 δ>0 ,存在开集 G⊇⋃α Dα 且 μ(G)≤δ 。定义偏序集

P={p⊆R:p是开集且μ(p)<δ} ,定义 p≤q↔p⊇q 。下面证明 P 满足可数反链条件:任选 P 的不可数子集 W ,显然存在 T⊆W∧

|T|>ω 和自然数 n 满足 p∈T→μ(p)<δ−1。

令 ⟨Iₖ:k<ω⟩ 是全体“有限个有理开集的并”的枚举,不难证明:对于任意 p∈T 、都存在 Iₖ ⊆p 满足 μ(p−Iₖ)<1

,并且存在不可数子集 S⊆T 和 I′ 满足 ∀p∈S,μ(p−I′)<1

,任选 p,q∈S ,那么 μ(p∪q)≤μ(p−I′)+μ(q−I′)+μ(I′)<δ ,因此 P 满足可数反链条件。

令 Aα={p∈P:p⊇Dα} ,不难看出 Aα 是稠密集:因为 Dα 是零测集,任选 p∈P∧μ(p)<δ−1

,那么任选q⊇Dα∧μ(q)<1

ₙ ,

则 p∪q∈Aα 。根据马丁公理,存在脱殊滤 G 与每个 Aα 的交不空,令 U=⋃G ,则 U⊇⋃αDα ,下面证明 μ(U)≤δ :首先注意到存在可数集 H⊆G 满足 U=⋃H ,此时如果 μ(U)>δ ,那么存在 p₁,⋯,pₙ∈H 满足 μ(p₁∪⋯∪pₙ)>δ (因为设 μ(p₁∪⋯∪pᵢ)=sᵢ ,那么 {sᵢ}ᵢ<ω 是单调递增序列,若 ∀i(sᵢ≤δ) ,那么 limᵢ sᵢ≤δ )但 G 是脱殊滤,因此 p₁∪⋯∪pₙ∈G ,则 μ(p₁∪⋯∪pₙ)≤δ ,矛盾,反证定理成立。而 H 的存在性有以下论证支持:如果 (α,b)=⋃η<λ(αη,bη),那么对于任意自然数 n ,存在 αη,bη′ 满足 |α−αη|,|b−bη′|< 1

ₙ ;

实数轴上每个开集都可 ⋃ᵢ<ω(αᵢ,bi) 的形式。 ⊣

推论:如果 MAκ 成立,那么任意 κ 个不交可测集 {Aα}α<κ ,都有 ∑αμ(Aα)=μ(∑α Aα) 。

证明:由于 {Aα}α<κ 只有可数个集合的测度大于零,且 κ 个零测集的并还是零测集,因此推论成立。⊣

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

琉璃仙途 连载中
琉璃仙途
清辰明月
正在修改小说中……少女身穿叶罗丽,阅尽世间繁华。“嫉妒什么的最讨厌了,别人的幸福要祝福!”——王默“悲伤是属于过去的,未来是由自己开创的!”......
1.6万字4周前
我在冥界自立为王 连载中
我在冥界自立为王
库克洛
…一…主(二娃)(大二)12、45、367
2.0万字4周前
轩顾往昔,忆雨梦汐 连载中
轩顾往昔,忆雨梦汐
欣落梦雨
那年的雨让我们相遇了,你希望我向太阳一样温柔,正因为如此,所以我叫——雨汐你就像我的太阳,照亮我前进的道路,一直陪伴着我,从未离开-蓝轩宇
3.1万字4周前
穿越后的收徒计划 连载中
穿越后的收徒计划
苏倾璃
5.22完成签约又名:穿越后我无敌了[Painkiller]不定期更新女主无敌的存在,女扮男装,而且男主重生,不喜欢的请绕道她小时候是个孤儿......
15.4万字4周前
超时空对话 连载中
超时空对话
150***398_002290305
我担心不能用有限的内容提要吸引亲爱的读者,因为我的确很想让朋友们相信,这会是一个不错的故事——如果,如果你也愿意相信:一个人,无论如何,这辈......
20.9万字4周前
女主光环争夺战 连载中
女主光环争夺战
ヤ℡幼稚╰小可爱❤
为了活下去而穿书?可是穿书就穿书,怎么还成了恶毒女配??不行不行,这样的人不能做,争夺女主,女主光环你值得拥有
10.8万字4周前