数学联邦政治世界观
超小超大

特殊篇章(数学解释)一 (4-3)

终极L是一个理想化的集合论宇宙模型,它包含所有的已知的和未知的大基数公理,包括上述那些强大的大基数,总之,终极L是一个浩瀚的领域。

冯·诺依曼宇宙V:(第二方案)

有一V_λ,若λ=a+1,则V_λ=P(V_a)(幂集),若λ为极限序数,则V_λ=∪_k<λV_k,∪_k V_k,k能够遍历所有序数,V_0=∅(空集),第0个是空集,第1个是空集的幂集{∅},第2个是第1个幂集的{∅,{∅}},第3个……以此类推,可以有任意多,然后还可以重新“结合”起来,进行下一次构造。

V可以理解为“万物”“一切”“所有”“无所不包”“超越一切”等在数学中的表现,V又名冯·诺依曼宇宙,是由冯·诺依曼命名的,也有部分人认为V是集合论宇宙的一部分,也有人认为冯·诺依曼宇宙V最终会是集合宇宙。

终极数学宇宙L

终极数学宇宙L目前还只是一个在完善的模型,并没有明确的结构构造。

斯科特的定理也说明了如果存在一个可测基数,哥德尔的L并不能容纳可测基数,也不能容纳比可测基数更大的大基数,V与L不相当,哥德尔的L不能做到,那是否会存在能做到容纳可测基数与更大的大基数的L?

这个问题库能在定理中证明,假设U是κ上的κ完全的正则非主超滤,在L[U]中的κ是一个且唯一的可测基数。

到目前为止,人们也构建出了能容纳强基数的内模型。

如果终极数学宇宙L等于V(冯V或宇宙V),则可证明连续统假设为真,也会存在一个独特集合论模型,或许可以说是真正的集合宇宙。

V等于终极数学宇宙L的前提条件有一个内模型是终极-L至少要见证一个超紧致基数,一个内模型是终极-L也可以至少见证超幂公理UA+地面公理GA+存在一个最小强紧致基数成立,一个内模型是终极-L必须是基于策略分支假设SBH。

脱殊复宇宙

什么是脱殊复宇宙?

脱殊复宇宙拥有在所有的力迫扩张下closure形式的冯·诺依曼宇宙V,这也确保了广义连续统的成立。

谈到脱殊复宇宙也就离不开脱殊扩张,脱殊扩张说的是包含V可定义的偏序集P,P上面有一个滤子称之为脱殊滤子G,然后通过把G加到V中来产生一个新的结构,V的脱殊扩张V[G]作为一个ZFC的模型。

什么是类?

类是一种数学术语,一般用于集合论或群论和其他数学领域,在集合论和其他数学的应用中,类是集合的搜集,可以依所有成员所共享的性质被无歧定义,有些类是集合,但有些则不是,一个不是集合的类就被称之为真类,在数学中,许多物对集合而言太大,因此必须以类来描述,要证明一给定“事物”为一真类,一般是证明此“事物”至少有着序数一般多的元素,真类不能是一个集合或者是一个类的元素,而且不符合集合论中ZF公理,因此避免了许多集合论中的悖论,而实际上,这些悖论成了证明某一个类是否为真类的方法之一,冯诺伊曼-博内斯-哥德尔集合论则采取了一种方式,类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类,真类,则为不可以是其他任何类的元素的类,真类是所有集合的统合,有点类似于冯·诺依曼宇宙V,我们也可以说冯·诺依曼宇宙V就是一个真类,而其他类都是由某些集合构建成的,因此真类应该也是最大的一类。

玄宇宙

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

魔族少主在逃中 连载中
魔族少主在逃中
shuxb
正经介绍:莫单(shan)熙,魔族少主,魔尊唯一的儿子,性格开朗活泼,活的潇洒肆意。苍梧州,仙界太子,温润如玉但腹黑,总想着世界那么大,我想......
1.2万字1个月前
无聊的修真界败类群聊 连载中
无聊的修真界败类群聊
愿君梦有所得
内容不限种类,更新不定时间,人物多为群像欢迎收看我的黑历史作品,别嫌弃啊,我心理很脆弱的,有什么意见可以提,但你不能骂我哟,你不喜欢你可以走......
0.1万字1个月前
杀死夏天 连载中
杀死夏天
予安Netia
我只想好好的过完一生......
0.0万字1个月前
改写历史散文集 连载中
改写历史散文集
柃陆
散文集,前后不照应
2.7万字1个月前
古道仙境1 连载中
古道仙境1
优甜美子
【已签约】故事情节说的就是,两个女生和一个神仙还有一个神秘的少年一起去冒险,一起找紫宝石,然后,有一个女生就爱上了一名神仙,她那个时候,很迷......
10.7万字1个月前
京剧猫之被利用的白糖 连载中
京剧猫之被利用的白糖
影陌轻尘
无意中知道了朋友是在利用自己,受到了刺激,从而知道了自己的身世,原来他就是创世神。黯,修,元的师傅。
0.3万字1个月前