数学联邦政治世界观
超小超大

不完全性定理

第一不完全性定理的内容是:“无论数学无矛盾地如何形式化,都存在着既不能证明也不能反证的命题。”

换句话说,不可能写出数学所需的所有公理。

既然这个定理被特意冠之以第一,那么也存在成为第二不完全性定理的东西。

第二不完备性定理是“任何形式的体系都不能证明其体系自身并不矛盾”。

这意味着,要显示某一形式体系并不矛盾,作为元逻辑,需要比该体系更有力的体系。

第一个在连续统问题上取得进展的是哥德尔。

受到罗素类型论思想的启发,哥德尔为集合论的公理系统ZFC构造了一个模型L,L的元素称为可构成集。

可构成集模型是一个分层的结构,其中每一层都是由前面层谱的可定义子集得到的。

哥德尔证明除了集合论已有的公理都在L中成立外,“可构成公理(V=L)”,即所有集合都是可构成的,在L中也成立,而这一公理蕴涵连续统假设,因此CH也在L中成立。

用数理逻辑的术语说,哥德尔的结果表明:如果ZFC是一致的,则ZFC+CH也是一致的。

因此,我们不能期望从ZFC证明CH是假的。

哥德尔构造集合论模型的方法是从全类V出发,L是对V的限制。

L包含了所有的序数(因此它是一个真类),它在“高度”上与V是一致的,只是它比V显得更“细”。

现在一般把包含所有序数的传递类称为“内模型”。

Ⅴ和L高度一致,宽度不够

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

皇帝的狐狸不好惹 连载中
皇帝的狐狸不好惹
嫣栀
一个是云狐山第一纨绔的狐仙云祁,平日里不是拔族长的胡子挖族长的酒,就是带着三只小狐狸去揍临山的妖兽顺带抢他们的灵果。一个是毫无权势被架空的废......
11.7万字8个月前
光夜合集 连载中
光夜合集
源君Elaine
内含光夜多个衍生文,古风、穿越、日常…凡所需者必管饱。
1.2万字9个月前
至少会爱我吧 连载中
至少会爱我吧
赤烟
如果你说,你真的很喜欢我,我会相信,你说但是我放不下她,我也要相信。但是这样的话,你至少还是爱我的吧。只是比不过她。罢了借用哈利波特部分人物......
12.9万字8个月前
水清灵 连载中
水清灵
夜无倾
天地开创之初,以鸟族仙鹤族为天地之主,以五行盛世于六界,以五行灵金木水火土为普灵,以光,月,海,天,地,风,雾,等属性为自然分配灵为自然灵,......
12.4万字8个月前
天道不公,我便逆天! 连载中
天道不公,我便逆天!
孤蜀依
李红尘逆天而行,结果被三位三清天尊打败,李红尘意外重生但变成了女儿身。之后遭遇种种事情,他(她)又要逆天!
2.9万字8个月前
白芊芊在星际成团宠 连载中
白芊芊在星际成团宠
意相逢
逃婚穿书到男多女少的异世界,她又该何去何从呢?遇到他他他,她又如何抉择呢?
6.3万字8个月前