数学联邦政治世界观
超小超大

奇异基数(数学定理) (6-6)

根据文章证明,我们知道 T 具有神奇性,当且仅当对于任意斯科伦项τ(c1,⋯,cm,cm+1,⋯,cm+n) ,如果τ(c1,⋯,cm+n)∈Ord 且 τ(c1,⋯,cm+n)<cm+1 ,那么τ(c1,⋯,cm+n)=τ(c1,⋯,cm,cm+n+1,⋯,cm+2n) 。

现在假设 T 不具有神奇性,那么存在项τ 满足 τ(c1,⋯,cm+n)<cm+1 且τ(c1,⋯,cm+n)≠τ(c1,⋯,cm,cm+n+1,⋯,cm+2n) 。

我们假设 J 是 Lλ 的所有序型是 κ 的无界的、 SHLλ(J)=Lλ 的不可辨元集中第ω 个元素 aω 最小的那个。

令 a1,⋯,am 是 J 的前 m 个元素,令 uα是第 α 组 J 中 n 个相邻元素组成的单增序列,即 maxuα<minuα+1 且minu0>am 。

根据前提可得 τ(a→,uα)<minuα 且

τ(a→,uα)≠τ(a→,uβ) 。

令 γα=τ(a→,uα) ,那么 α<β→γα<γβ ,否则有 γα>γβ ,根据不可辩元定义可得γ1>γ2>⋯ ,但这与基础公理矛盾。

现在定义 K={γδ:δ<κ} ,现在证明 K 是Lλ 的序型为 κ 的不可辨元集:假设Lλ⊨ψ(γ1,⋯,γn) ,由 γi 的定义和不可辨元集 J 可得 Lλ⊨ψ(γi1,⋯,γin) ,对任意γi1<⋯<γin ,因此 K 是 Lλ 的序型为 κ的不可辨元集。

现在令 SHLλ(K)=N ,令 π:N→Lλ 是传递化映射且 π[K]=K′ ,因此 K′ 在 Lλ 中无界。

由于 π(γω)≤γω<aω ,即 K′ 的第 ω 个元素小于 J 第 ω 个元素,反证 T 具有神奇性。 ⊣

引理 1 事实上证明了:只要存在某个Lλ 含有一个不可数的不可辨元集,那么 T={ψ∈L∈∗:Lλ⊨ψ} 就是神奇的EM蓝图。

现在我们证明Ramsey基数都是 0♯ 基数。

证明:令 κ 是Ramsey基数,由于 Lκ 含有一个基数为 κ 的不可辨元集,根据引理 1 ,存在神奇的EM蓝图。 ⊣

最后证明一个关于 0♯ 的等价定义:

0♯ 存在,当且仅当 ℵωV 在 L 中是正则基数。

这个证明要用到Jesen覆盖引理:如果0♯ 不存在,那么对于任意不可数序数集 X ,存在 Y∈L 满足 X⊂Y∧|X|=|Y|。

Jesen覆盖引理表明在 0♯ 不存在的情况下, L 和 V 十分接近。

定理 2 :0♯ 的等价定义的证明:如果0♯ 不存在,那么定义X=ω1∪{ℵn:n<ω} ,根据Jesen覆盖引理,存在 Y∈L∧Y⊃X∧|Y|=|X| ,如果ℵωV 在 L 中是正则基数,由于L⊨supY=ℵωV ,但 |Y|=ω1 ,这显然不可能,反证 ℵωV 在 L 中是奇异基数。

事实上该证明过程可以推广到任意奇异基数 κ 上。 ⊣

定理 3 : 0♯ 存在当且仅当∃κ(κ→(ω1)2<ω) 。

根据此文章,定理显然成立。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

爱情故世 连载中
爱情故世
孤帆一心
0.2万字8个月前
八叉 连载中
八叉
银杏爱精致
0.3万字8个月前
夜青纱的神秘恋人 连载中
夜青纱的神秘恋人
秦明月殇
宇宙星系,浩瀚无垠。看似玄幻,奥秘无穷,实则大道至简。造物主便是一切玄幻之根源。为争夺领导权,前造物主九重天帝和诸神之间,爆发了一场蓄谋已久......
31.5万字8个月前
异人七战将 连载中
异人七战将
花少336
陈福,本是21世纪的大好青年,奈何意外魂穿,进入武灵世界,成为一个绝世废材。阴谋围绕,路途多舛,穿越少年能否在六位伙伴的陪伴下逆袭为王?美女......
11.4万字8个月前
妖妄 连载中
妖妄
一个妖道
雾隐一日,尘世百年,一花开败,一道轮回,三千发白,青衣纪茶,百年一日,不过云烟。世人只知有山雾隐,却不知有妖纪茶。万妖只知纪茶其人,却不曾见......
13.1万字8个月前
憧憬成为魔法少女的我为什么会变成反派啊喂 连载中
憧憬成为魔法少女的我为什么会变成反派啊喂
大病初郁
她就是一个普通的女孩子,有一天在厕所里遇到一个神秘人,神秘人问,你要成为魔法少女吗?她欣然答应,然后,就成为了魔法少女的对立面。
0.8万字8个月前