数学联邦政治世界观
超小超大

奇异基数(数学定理) (6-6)

根据文章证明,我们知道 T 具有神奇性,当且仅当对于任意斯科伦项τ(c1,⋯,cm,cm+1,⋯,cm+n) ,如果τ(c1,⋯,cm+n)∈Ord 且 τ(c1,⋯,cm+n)<cm+1 ,那么τ(c1,⋯,cm+n)=τ(c1,⋯,cm,cm+n+1,⋯,cm+2n) 。

现在假设 T 不具有神奇性,那么存在项τ 满足 τ(c1,⋯,cm+n)<cm+1 且τ(c1,⋯,cm+n)≠τ(c1,⋯,cm,cm+n+1,⋯,cm+2n) 。

我们假设 J 是 Lλ 的所有序型是 κ 的无界的、 SHLλ(J)=Lλ 的不可辨元集中第ω 个元素 aω 最小的那个。

令 a1,⋯,am 是 J 的前 m 个元素,令 uα是第 α 组 J 中 n 个相邻元素组成的单增序列,即 maxuα<minuα+1 且minu0>am 。

根据前提可得 τ(a→,uα)<minuα 且

τ(a→,uα)≠τ(a→,uβ) 。

令 γα=τ(a→,uα) ,那么 α<β→γα<γβ ,否则有 γα>γβ ,根据不可辩元定义可得γ1>γ2>⋯ ,但这与基础公理矛盾。

现在定义 K={γδ:δ<κ} ,现在证明 K 是Lλ 的序型为 κ 的不可辨元集:假设Lλ⊨ψ(γ1,⋯,γn) ,由 γi 的定义和不可辨元集 J 可得 Lλ⊨ψ(γi1,⋯,γin) ,对任意γi1<⋯<γin ,因此 K 是 Lλ 的序型为 κ的不可辨元集。

现在令 SHLλ(K)=N ,令 π:N→Lλ 是传递化映射且 π[K]=K′ ,因此 K′ 在 Lλ 中无界。

由于 π(γω)≤γω<aω ,即 K′ 的第 ω 个元素小于 J 第 ω 个元素,反证 T 具有神奇性。 ⊣

引理 1 事实上证明了:只要存在某个Lλ 含有一个不可数的不可辨元集,那么 T={ψ∈L∈∗:Lλ⊨ψ} 就是神奇的EM蓝图。

现在我们证明Ramsey基数都是 0♯ 基数。

证明:令 κ 是Ramsey基数,由于 Lκ 含有一个基数为 κ 的不可辨元集,根据引理 1 ,存在神奇的EM蓝图。 ⊣

最后证明一个关于 0♯ 的等价定义:

0♯ 存在,当且仅当 ℵωV 在 L 中是正则基数。

这个证明要用到Jesen覆盖引理:如果0♯ 不存在,那么对于任意不可数序数集 X ,存在 Y∈L 满足 X⊂Y∧|X|=|Y|。

Jesen覆盖引理表明在 0♯ 不存在的情况下, L 和 V 十分接近。

定理 2 :0♯ 的等价定义的证明:如果0♯ 不存在,那么定义X=ω1∪{ℵn:n<ω} ,根据Jesen覆盖引理,存在 Y∈L∧Y⊃X∧|Y|=|X| ,如果ℵωV 在 L 中是正则基数,由于L⊨supY=ℵωV ,但 |Y|=ω1 ,这显然不可能,反证 ℵωV 在 L 中是奇异基数。

事实上该证明过程可以推广到任意奇异基数 κ 上。 ⊣

定理 3 : 0♯ 存在当且仅当∃κ(κ→(ω1)2<ω) 。

根据此文章,定理显然成立。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

盛夏寒丹 连载中
盛夏寒丹
何小丹
你救我一命,我护你一生
0.5万字1个月前
你有意思吗 连载中
你有意思吗
伤心小朋友
双男主小说,主角夜北因为玩真心话大冒险输了,变成了一个小孩,来到了另一位男主牧晨家的附近,假装成了一个流浪的孤儿,牧晨一心软就收他为了徒弟,......
0.1万字1个月前
开心超人之邪月组织 连载中
开心超人之邪月组织
落曦瑶海
“当年是你们把我们赶出来的!现在,你们要受到应有的惩罚”
2.2万字1个月前
兽穿:奶狼兽夫想生崽崽了 连载中
兽穿:奶狼兽夫想生崽崽了
玉非鱼
(已签约,可放心食用)爆笑兽穿,一体双魂,身穿兽世的她成了一体双魂的兽人,一睁开眼就被告知,他们一大家子要被赶出部落了,原来她的兽人父母们在......
23.2万字1个月前
快穿:999个世界的我玩疯了 连载中
快穿:999个世界的我玩疯了
林墨玖_爱潇
姜淼本来是一个大佬,硬生生被逼成可以个沙雕,这其中曲折有事谁能说的清楚的呢
6.6万字1个月前
重生女帝:踩朕裙子了 连载中
重生女帝:踩朕裙子了
江向周今天更了吗
改名《凤谕天下》身陷火海竟然重生,大不同的性情让她开起逆袭之路,成为女帝管制天下,当初如此信任三哥可却又处处压制着他?竟不了消失多年的皇兄竟......
11.0万字1个月前