数学联邦政治世界观
超小超大

外宇宙篇章(数学论文)

我们可以很容易想象诸如 Ord+1 这样似集合的对象,如果这些对象也能像集合那些形成大全,记为 V∗ ,那么它的封闭性至少应当不下于 V ,即至少存在初等嵌入 f:V→V∗ 。

考虑到 ∈ 是 Ord 上的良序关系,但不是 Ord+1 上的。

定义“ x 是集合”当且仅当 ∃y(x∈0y),否则称作真类或真 0 型类,并且“ x 是真 α 型类”当且仅当 ¬∃y(x∈αy) ,此外记由 α 型类构成的大全为 VOrd[α] ,出于同样的期待可以认为对任意 α<β 均存在初等嵌入

f:VOrd[α]→VOrd[β] ,它们完全可以有个共同的扩张,即终极大全 V={x:x=x} 。

若对任意 α 均存在初等嵌入

f:VOrd[α]→V ,那么自然会对任意 α<β

均存在初等嵌入 f:VOrd[α]→VOrd[β] 。

而在这种情况下,别说是在任意VOrd[α] 中,即使是在 V 中 Ord 也依旧是具有特殊性的序数,比如它是一阶不可定义的。

这时我们就可以尝试定义:称 α 是划分序数,当且仅当存在初等嵌入 f:Vα→V,而 Ord 就是最初的划分序数,划分大全的序数。

不过,当我们已经承诺像 VOrd[α] 这样的外宇宙存在时,就可以不只是考虑存在初等嵌入 f:V→VOrd[α] ,比如存在初等嵌入

f:VOrd+1→VOrd[α]+1 。

若仅仅只是存在 f:V→VOrd[α] ,那么由于 V 满足“存在 κ 是超级莱因哈特基数”,就可知存在初等嵌入 f:Vκ→V。

但哪怕 V 满足已知的所有大基数公理,都无法得到存在初等嵌入

f:Vκ+1→VOrd+1 。

甚至于,我们可以假设对任意 α,λ∈V,均存在初等嵌入

f:VOrd+λ→VOrd[α]+λ ,这就意味着 V和 V∗ 是极度相似的——不论是从任意超越的层次来看,外宇宙的超越性将同样反馈到集宇宙上使之比我们预期的还要超越。

其最终,我们可以尝试定义:称 κ 是划分序数,当且仅当对任意划分序数 κ<λ,均存在非平凡初等嵌入 j:V→V 并且cr(j)=κ∧j(κ)=λ 。

由于 V 已经是终极大全了,我们很难说再有 f:VOrd+1→P(V) ,但不妨碍我们令 VOrd[α] 具有 V 的特征从而共享。

比如对任意划分序数 κ 均存在划分序数κ<λ 使得对任意划分序数 α<β<λ 均存在非平凡初等嵌入 j:Vλ→Vλ 并且

cr(j)=α∧j(α)=β 。

不妨称这样的序数为分割序数,借由它来考察 V 。

若 κ 是分割序数,则对任意 α<κ 和任意S⊂Vκ+α ,若 |S|<κ ,则存在划分序数λ 和 S∗⊂Vλ+α 以及初等嵌入

f:Vλ+α→Vκ+α 使得 f 限制在 S∗ 上是双射。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

网红圈:撩人狐狸 连载中
网红圈:撩人狐狸
苏千荨
清冷气质中戴的却是可爱稚嫩的面庞,讨喜的性格惊人的样貌让她在互联网这口饭中吃的很好每个人都是暧昧对象或者前男友哈。互联网这碗饭。真难吃。“3......
0.2万字3个月前
被恶魔选中的少女 连载中
被恶魔选中的少女
IIOVE小胖
少女莫莉被恶魔撒旦选中,从此便有了恶魔之力,这究竟是偶然还是蓄谋已久,少女莫莉的华丽冒险之旅就此开启……
6.0万字3个月前
穿越三生三世十里桃花之旅 连载中
穿越三生三世十里桃花之旅
去买糖糖
有朝一日,你看到了,凤九为爱断尾,白浅与夜华的三生三世,你十分的想改变他们的命运,可就在今天,你的命运实现了!
3.6万字3个月前
走进游戏拯救时间 连载中
走进游戏拯救时间
凤岚蝶
在一所城翔高中里城翔高中是整个S市最有名的高中高中非常大,如若是刚到这里你会突然认识到自己是个路痴此时已经是放学时间,虽然是放学但高三的时间......
9.2万字3个月前
伽罗归来 连载中
伽罗归来
柠檬酸不酸啊
科幻
1.4万字3个月前
雪月花时最忆君 连载中
雪月花时最忆君
偏舟
民间话本家容颜写了关于太子凌云的小故事,却被发现抓入皇宫,开始了一段与太子的搞笑爱情故事……基本上每一个角色都有自己的官配中考后更新,女主名......
4.8万字3个月前