数学联邦政治世界观
超小超大

实数Z(数学论文) (6-1)

证明。

我们将使用几乎不相交的编码,通过五步强制来产生实z。

对于这种强迫的介绍,参见例如[3]的调查或[38],其中给出了类似的论点。

我们在地面模型上进行强制

Lp²ⁿ⁻¹(x,Kᴹˣ│(γ⁺)ᴹˣ).

Lp²ⁿ⁻¹(x,Kᴹˣ│(γ⁺)ᴹˣ)是Mₓ的一个可定义集,因为根据表述2中的性质(4)我们得到

M#₂ₙ₋₁(x,Kᴹˣ│(γ⁺)ᴹˣ)∈Mₓ

根据引理3.23,对M#₂ₙ₋₁(x,Kᴹˣ│(γ⁺)ᴹˣ)及其图像的最小测度进行ωⱽ₁次迭代,并在ωⱽ₁处截断,得到下半模型Lp²ⁿ⁻¹(x,Kᴹˣ│(γ⁺)ᴹˣ)

这意味着,特别是cf(γ)ᴸᴾ²ⁿ⁻¹⁽ˣ,ᴷᴹˣ│(γ⁺)ᴹˣ⁾≥ ω₁ᴹˣ.

唱。

步骤1:为地面模型写入V₀=Lp²ⁿ⁻¹(x,Kᴹˣ│(γ⁺)ᴹˣ)我们从一个预备强迫开始,它将ω₁ᴹˣ以下的一切坍缩为ω,之后我们将γ坍缩为ω₁ᴹˣ。

所以设G₀ ∈ V为Col(ω,<ω₁ᴹˣ)-一般除以

V₀,设V'₀=V₀[G₀].

此外,设G'₀ ∈ V为Col(ω₁ᴹˣ,γ)-泛型V'₀,设V₁=V'₀[G'₀].

所以我们有ω₁ᴹˣ=ω₁ⱽ¹通过我们选择的γ,也就是cf(γ)ⱽ⁰ ≥ ω₁ᴹˣ,我们还有(γ⁺)ᴹˣ=(γ⁺)ᴷᴹˣ

=ω₂ⱽ¹.

我们写ω₁=ω₁ⱽ¹ω₂=ω₂ⱽ¹

进一步,设A'是编码G₀和G'₀,的序数集合,这样,如果我们令A⊂(γ⁺)ᴹˣ

x ⨁(Kᴹˣ│|(γ⁺)ᴹˣ)⨁A',

然后我们有G₀,G'₀ ∈ Lp²ⁿ⁻¹(A)和Kᴹˣ│(γ⁺)ᴹˣ ∈ Lp²ⁿ⁻¹(A).

事实上,我们可以选择集合A使V₁=Lp²ⁿ⁻¹(A)通过下面的论证:回想一下

Lp²ⁿ⁻¹(A)=M(A)│ω₁ⱽ,

其中,M(A)表示Iω₁ⱽ,式中M#₂ₙ₋₁(A)对集合A的最小测度及其像的迭代。

然后我们可以认为G₀在模型M(x,Kᴹˣ│(γ⁺)ᴹˣ)上是泛型的,而G'₀在模型M(x,Kᴹˣ│(γ⁺)ᴹˣ)[G₀],上是泛型的,其中M(x,Kᴹˣ│(γ⁺)ᴹˣ)表示ω₁ⱽ M#₂ₙ₋₁(x,Kᴹˣ│(γ⁺)ᴹˣ 的最小测度及其像的迭代。

由于步骤1中的两种强迫都发生在(γ⁺)ᴹˣ<ω₁ⱽ以下,

因此证明中有定理2.25M(x,Kᴹˣ│(γ⁺)ᴹˣ)[G₀][G'₀]=M(A)对于集合A ⊂ (γ⁺)ᴹˣ

编码x,Kᴹˣ│(γ⁺)ᴹˣ,G₀和G'₀,因此我们得到V₁=M(A)│ω₁ⱽ对于这个集合A,如所期望的那样。

步骤2:在我们可以使用ω₁=ω₁ⱽ¹,的几乎不相交的子集执行第一次编码之前,我们必须“重塑”(γ⁺)ᴹˣ=ω₂ⱽ¹和ω₁之间的间隔,以确保我们将在步骤3中执行的编码存在。

此外,我们必须确保重塑强迫“本身不会使ω₁和(γ⁺)ᴹˣ崩溃。

我们将通过证明重塑强迫是<(γ⁺)ᴹˣ-分布来证明这一点。

我们将使用以下重塑的概念。

定义3.28。

设n为基数,设X⊂η⁺,我们设函数f为(X,η⁺) -对某些f:α → 2以及对所有α ≤ η⁺且ξ ≤ α的函数ξ<η⁺进行重塑,我们有

(i)L[x∩ξ,f ⨡ ξ] ⊨ |ξ| ≤ η ,or

(ii)有一个模型N和一个Σₖ-elementary嵌入

j:N→Lp²ⁿ⁻¹ (X)│η⁺⁺ 对于足够大的k<ω,使得

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

司荭,小姐您如愿就好 连载中
司荭,小姐您如愿就好
都值得我前进
十五岁的秦知许与修炼了千百年的红藤小姐司荭缔结缘起,时光飞逝秦知许摇身一变成特工成熟稳重的秦傅劭。十五岁的他和司荭与密林深处缔结的缘分一直在......
0.3万字1个月前
安全逃生 连载中
安全逃生
胆小鬼j
    (序)  我转身看向那条长长的走廊,空洞洞的,像是一口吃人的棺材,我听见有人在身后喊我,叫我不要进去,我再也没有力气张口说出一句话。
2.8万字1个月前
喜,繁星……冰风 连载中
喜,繁星……冰风
咩喵喜
当圣光笼罩大地,生命则苏醒…
0.2万字1个月前
收个反派当徒弟 连载中
收个反派当徒弟
赤飞冥
【已签约,禁止转载抄袭】(双男主❤️)阴阳国度有个传说,一个脸戴面谱,十指配戴护甲,一身高贵装扮,手一提,刀一落,敢问何人不是他手中亡魂,被......
33.9万字1个月前
武神归来 连载中
武神归来
暧非爱
她是女娲之女,肩负天下苍生,年少轻狂,爱上不该爱的人,坠入云之彼端,魂飞魄散,幸得阎王相助,重塑其身,却失去记忆。他是妖界妖皇,权力蒙心,亲......
34.6万字1个月前
霜胤又一莲 连载中
霜胤又一莲
尹莲桃
在不了解故事的真相时,你会做什么。谴责,亦或是饶恕?谁喜欢做选择题呢?…………………………………我叫雪莲,我是21世纪最著名也是最红的全属性......
15.0万字1个月前