五、r0η,式中δ=|Q0|+,单位为V。将其与强迫Vη⊆Vη[G]相结合,我们得出V[G]η=WVηr0[G0][G]是强制WV的延伸ηr0通过大小小于δ的非平凡强迫概念Q0
然后是策略性的<κ-闭强迫Q。根据引理5,它如下
V[G]η在WV上具有δ-近似和覆盖性质ηr0。
同样,因为Vκ≺2V[G]θ,我们知道V[G]θ也认为它是通过强制超过WV而获得的[G] θr0G0⊆Q0,因此V[G]θ=WV[G] θr0[G0]。通过再次切至η,我们也知道V[G]η=WV[G] ηr0[G0],并且我们再次知道r0=(<δ2)WrV0[G]η。
由于这是大小小于δ的作用力,因此V[G]η也具有
WV上的δ-近似和覆盖性质[G] ηr0。所以情况是WV吗ηr0和WV[G] ηr0
都是V[G]η的基δ-近似和覆盖性质,并且它们具有相同的二进制δ-数(<δ2)W
五、r0η=r0=(<δ2)W
五、[G] ηr0以及正确的δ+。因此
根据定理4得出WVηr0=WV[G] ηr0。这立即意味着V[G]η=WV[G] ηr0[G0]=WVηr0[G0]。
注意G0∈Vη,因为它在V[G]中,并且秩小于κ
因此不可能通过策略性的<κ-闭合强迫Q来添加。此外,由于WVηr0⊆Vη,我们从显示的上面的方程V[G]η⊆Vη。这与Q、 从而证明了该定理。
因此,我们现在可以推导出主定理1的其余部分。
主要定理的证明1。主定理2相当于(a加强of)主要定理1陈述(6),现在的重点是主定理1立即被它所暗示,原因很简单,主定理中提到的所有其他大基数性质意味着∑3-在相同目标下的可扩展性。
如果κ是超荣,例如,由嵌入j:V的超荣见证→ M,目标θ=j(κ),Vθ=Mθ,则如下
Vκ≺Mj(κ)=Vθ,从而表明κ是∑n可拓的所有n的目标θ。由于每一个几乎巨大的、巨大的、超巨大的、秩为秩的、可扩展的和1-可扩展的基数也与同样的目标,同样的结论适用于这些基数。每0-可扩展基数对于每个n都是明确的∑n-可扩展的,类似地
提升基数和伪提升基数。如果κis弱超容,则将存在嵌入j:M→ N临界点κ和Vj(κ)⊆N,从而表明Vκ≺Vθ
对于θ=j(κ),证明κ是0-可扩展的,因此∑n-可扩展,对于每一个n,同样的推理也适用于超荣不可折叠基数,它们是弱超荣的。我们已经提到∑n可拓到任意θ∈C(n),因此类似于每个∑n反射基数。
因此,如果κ具有main中提到的任何大型基数性质
定理1,则它是∑3-可扩展的,具有相同的目标θ,并且被强迫Q∈Vθ破坏,表明所有其他大对于θ或更高的目标,基数性质也被破坏。
4.改进、替代证明和问题
由于超紧基数和许多其他大基数可以是使得Laver是不可破坏的,并且这些基数特别是必须是∑2-反射的,因此也是∑2-可拓的,它如下(假设那些大基数概念的一致性)不能从∑3-可扩展性提高到∑2-可扩展性。也就是说,我们已经知道∑2-可拓基数为兼容性质坚不可摧。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。