注:超宇宙计划(第二版本)篇章(2/2)
§3.优选宇宙的标准。哪些宇宙在超宇宙计划?
在第1节中,我们指出,通过订阅超宇宙项目一应符合首选项目的原则和标准从对超宇宙的公正审视中产生的宇宙,以便获得合理的宇宙选择。因此,该程序排除集合论或数学实践的特定领域产生的需求在制定优选宇宙的标准中发挥作用的可能性。
因此,人们应该更喜欢其中的宇宙原则认为,解决集合的特定领域中出现的困难理论或数学不适合这样的标准。让我们给一些这种非标准的例子。
a.广义连续统假说(GCH),在解决集合论中的一系列问题;
b.V=L,一个产生强大的无限组合数学的理论可以用来解决集合论中比GCH更多的问题;
c.射影确定性(PD),它产生了一个有吸引力的实数射影集理论;
d.强制公理(如MA、BPFA、BMM),与V=L一样,具有强大的组合强度,这类标准反映了集合论者特定群体的利益或者数学家。因此,可能存在许多不同的此类标准。
因为存在集合论或数学领域。此外,作为集合论发生了变化,这些标准也可能发生变化。因此,一开始,没有选择宇宙可以根据它们来制造,这些宇宙可以被认为是普遍的在作为一个整体的集合论界中被公认为合法的。是有更好的方法来选择首选的宇宙吗?
超宇宙计划对这个问题的肯定回答。
相反,通过只关注超宇宙的最普遍特征,并根据这些特征制定原理,人们就能够提出(并证明)首选宇宙的标准。这是基于显而易见的事实是,超宇宙由ZFC模型组成,可能是相互关联的(一些宇宙可能是,例如,强迫扩展,地面模型,或对其他模型的初始分段进行排序),并且可以合理地选择超宇宙的元素在这种比较中是“优选的”。这些明确地与宇宙相联系满足最大化或无所不知。
在考虑超宇宙的一个元素如何在在最大化的情况下,让我们提到一个根据选择宇宙的危险从对超宇宙的公正审视中得出的原则和标准。
这样做可能会导致采用一阶语句与事实上既定的理论真理相矛盾。让我们举一个例子。一个人可能希望基于最小性原则来选择优选的宇宙。因此,人们的标准是,首选的宇宙应该尽可能小。这个标准可能导致只选择一个宇宙,ZFC的最小模型,这意味着ZFC的集合模型不存在的陈述表达了V的一个性质。
然而,这与集合论实践有着明显的冲突,即ZFC的集合模型的存在确实属于事实集合论的范畴真相,这同样适用于受极小性原则启发的较弱标准,根据该原则,人们应该更喜欢满足公理的宇宙尽管可构造性公理确实存在允许ZFC的集合模型的存在(以及更多),它不允许对于具有可测量基数的ZFC的内部模型的存在性。这也与集合论实践相冲突,即集合论的存在模型属于事实集合论真理的范畴(重点是在附录中进一步讨论)。
我们现在谈谈最大化原则。要说明的第一点最大性是指在超宇宙中不可能存在“结构最大性”,即优选的宇宙应该包含所有可能的东西序数或实数。因为没有最高的可数传递模型的ZFC,并且在任何这样的模型上,可以添加新的real来获得另一个这样的模型。那么,什么样的最大化原则可以强加给要素呢超宇宙的?
{Logical)极大性。设v是一个变量,其范围在的元素上超宇宙。v是(逻辑上)极大的,如果所有的集合论陈述某些在外部成立的参数,即在某个包含v的宇宙中作为“亚宇宙”,也在内部持有,即在v的某些“亚宇宙中”。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。