数学联邦政治世界观
超小超大

补丁版第(5)章格罗滕迪克 (6-5)

例如,正则映射f:Y → X 的图(gragh)Γ f属于Cᵈⁱᵐ ˣ( X × Υ ),其转置 Γᵗ f 属于Cᵈⁱᵐ ˣ (X × Υ)=Corr⁰(X,Y). 换句话说,从 Y 到 X 的一个正则映射定义了一个从 X 到 Y 的 0 次对应 ⁹.

从 X 到 Y 的一个0次对应 γ 定义一个同态 H*(X) → H* (Y) .即

x↦q*(p*x ∪cl(γ)).

这里 p 和 q 是投影映射

p q

X ←X × Υ → Υ.

_____  

⁷ 这是同伦等价的代数类比. 一 原注

⁸ 特别地,任意两个代数链 γ₁ 和 γ₂ 都分别有理等价于真相交的代数链 γ'₁ 和γ'₂,并且 γ'₁ · γ'₂的有理等价类不依赖于γ'₁和γ'₂ 的选择. — 原注

⁹ 这里逆反方向是不适宜的,但是在某些时候不得不这么做,因为要和Grothendieck以及大部分随后的作者保持一致. 一 原注

5

  由Γᵗ f给出的上同调的映射与由 f 给出的是一致的.

我们采用记号:

Corrʳ~(X,Y)=Corrʳ(X,Y)/~, Corrʳ~(X,Y)ℚ=Corrʳ~(X,Y)⨂𝕫 ℚ.

5母题的定义

Grothendieck¹⁰ 的想法是,应该存在一个泛上同调理论其取值于由母题构成的ℚ―范畴M(k).

●因此,M(k)应该是一个像有限维ℚ―向量空间范畴 Vecℚ 一样的范畴(但并不完全相似).特别;

― Hom 应该是ℚ― 向量空间(倾向于有限维);

― M(k)应该是一个Abel范畴;

― 进而,M(k)应该是一个ℚ上的Tannaka 范畴 (见下面).

● 应该存在一个泛上同调理论

X⇝h X:(非奇异射影簇) → M(k).

特别是:

― 每个代数簇 X 应该定义一个母题h X,每个从 X 到 Y 的零次对应应该定义一个同态 hX → hY(特别地,一个正则映射 Y → X 应该定义一个同态 hX → hY).

― 每个好的上同调理论¹¹应该能唯一通过X⇝hX分解.

初论

我们可简单地将M~(k)定义为这样的范畴;对 k 上每个非奇异射影簇 X 有对象hX ,而态射由

Hom(hX,hY)=Corr⁰~(X,Y)ℚ

定义,态射的合成即为对应的合成,所以这是一个范畴.然而,这存在着明显的不足.例如,一个ℚ― 向量空间 V 的自同态 e ,若满足e²=e,则其可将此向量空间分解成其 0 和 1 的特征空间

V=Ker(e)⨁eV,

若(W,f)为另一个这样的对,则在Hom ℚ - 线性(V,W)中有:

Homℚ - 线性 (eV,fW) ≃ f o Homℚ - 线性(V,W)o e.

同样的结论在任意Abel范畴中亦成立,因此,如果我们想让M~(k)成为Abel 范畴,我们至少应该把幂等态射的像也添加到

  

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

Fading——凋零 连载中
Fading——凋零
氯氧化氢
(已签约)在苏州市东南方向坐落着一个声名显赫的中学——苏州湾实验初级中学。学校里除了优秀的教师还存放着一件至宝——迷梦之眼。很多人为了得到它......
6.2万字9个月前
穿进恐游里,意外攻略杀人魔 连载中
穿进恐游里,意外攻略杀人魔
一只兔小小
姜念,一位普通的大学生,意外穿越到一个名为“死亡游戏”的恐怖游戏世界中。在这个充满未知与危险的游戏世界里,她必须解开重重谜题,战胜恐怖的挑战......
0.7万字8个月前
宁熠奇缘 连载中
宁熠奇缘
该用户已注销
天帝太微有两子长子润玉封为夜神…………
30.2万字8个月前
从天而降的修仙系统 连载中
从天而降的修仙系统
辛晓琪
因为被朋友梦瑶陷害,导致安凉被赶了出去,走在路上的安凉,遇到了修仙系统安逸,然后开始了一段属于自己的人生,然后开始复仇(作者大大有话说:这个......
13.8万字8个月前
快穿之专业拐带小奶狗 连载中
快穿之专业拐带小奶狗
水茉
又是努力整改成气泡体的一天呢!“纵时光流转,我也会找回你。”“终于等到你,此生终可共白头。”女主原则:宠。注:已签约,原创作品,禁搬禁运。
14.2万字8个月前
TNT:迷幻星使 连载中
TNT:迷幻星使
清风fang
数万年前,第一位也是唯一一位的全系精灵出现。后来,因为某些原因,她陷入了沉睡。7千年后,她如约醒来,四处流浪,撞见了战神联盟。“布莱克,是你......
6.7万字8个月前