数学联邦政治世界观
超小超大

补丁(2)集合论十大公理篇章序列论文 (4-1)

集合论的公理----ZFC

集合论中其中一套由Skolem最后整理的公理系统,称为Zermelo-Fraenkel集合论(ZF)[策梅罗-弗兰克尔集合论]。实际上,这个名称通常不包括历史上远比今天具争议性的选择公理,当包括了选择公理,这套系统被称为ZFC。

集合论十大公理

1.存在公理 Exi

存在一个集合,

∀ x ( x = x ) . \forall x(x=x). ∀x(x=x).集合论的逻辑有一个本体论的承诺:我们所谈论的对象不能是虚无的,至少存在着一个集合。事实上,这个存在的集合就是无限集合。

2.外延公理 Ext

(Axiom of extensionality)两个集合相同,当且仅当它们拥有相同的元素。

∀ X ∀ Y ∀ z ( z ∈ X ⇔ z ∈ Y ) ⇒ X = Y . \forall X \forall Y \forall z(z \in X \Leftrightarrow z \in Y) \Rightarrow X=Y. ∀X∀Y∀z(z∈X⇔z∈Y)⇒X=Y.又,若x和y有相同的元素,则它们属于同一个集合:

∀ X ∀ Y ∀ Z ( Z ∈ X ⇔ Z ∈ Y ) ⇒ ∀ Z ( X ∈ Z ⇔ Y ∈ Z ) . \forall X \forall Y \forall Z(Z \in X \Leftrightarrow Z \in Y) \Rightarrow \forall Z( X \in Z \Leftrightarrow Y \in Z). ∀X∀Y∀Z(Z∈X⇔Z∈Y)⇒∀Z(X∈Z⇔Y∈Z).

这个公理表明,集合是由其元素决定的。

在集合论中,集合的元素也是集合。

3.分离公理模式 Sep

(Axiom schema of specification / axiom schema of separation / axiom schema of restricted comprehension)或称子集公理、概括公理、分离公理,给出任何集合及命题P(x),存在着一个原来集合的子集包含而且只包含使P(x)成立的元素。

令 p ( u ) {p(u)} p(u) 为一公式,对任意集合 X X X,存在一个集合 Y = { u ∈ X ∣ p ( u ) } Y=\{u \in X| p(u) \} Y={u∈X∣p(u)}:

∀ X ∃ Y ∀ u ( u ∈ Y ⇔ u ∈ X ∧ p ( u ) ) . \forall X \exists Y \forall u(u \in Y \Leftrightarrow u \in X \wedge p(u)) . ∀X∃Y∀u(u∈Y⇔u∈X∧p(u)).它实际上代表着无穷多条公理,对每一公式 p p p ,都存在对应的一个分离公理。它是对概括原则( ∀ p ( x ) , ∃ Y = { x ∣ p ( x ) } \forall p(x), \exists Y=\{x | p(x)\} ∀p(x),∃Y={x∣p(x)} )的限制。

分离公理还可以定义空集:

w 是 一 个 已 存 在 的 集 合 , ∅ = { u ∈ w ∣ ¬ ( u = u ) } . w是一个已存在的集合, \varnothing = \{ u \in w\mid \lnot (u=u)\}. w是一个已存在的集合,∅={u∈w∣¬(u=u)}.由外延公理还可证明空集是唯一的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

哈利波特与死亡圣器…… 连载中
哈利波特与死亡圣器……
江厌01
就是关于哈利波特的
0.1万字6个月前
繁星的相遇 连载中
繁星的相遇
橙赂
在这里说一下,女主是林微,男主是顾申,这是本从古代修仙穿越到现代的一本书男女主本是修仙界的老祖,而且还道侣女主在某一天被人暗算穿越到了现代…......
1.1万字5个月前
妍鱼鱼随笔 连载中
妍鱼鱼随笔
妍鱼鱼
由作者妍鱼鱼所写的一些随笔,作品都是原创,如有相同,纯属巧合。
0.3万字5个月前
还珠格格加三生三世十里桃花 连载中
还珠格格加三生三世十里桃花
雨水露
非永燕,改写,小燕子和白真在一起
0.3万字5个月前
当俄罗斯变小 连载中
当俄罗斯变小
露依姗
嗯……算了。不写简介了,太麻烦【纯属虚构】【纯属虚构】【纯属虚构】!【本故事纯属虚构】
0.1万字5个月前
神族小公主改变命运 连载中
神族小公主改变命运
该用户已注销
12.2万字5个月前