数学联邦政治世界观
超小超大

补丁(4)格罗滕迪克论文部分篇章论文。 (3-1)

容易引起莫名争议的问题是全域( unverse),也经常被称为Grothendieck(格罗滕迪克)全域1.⁾在ZFC的基础上,全域是一个不可数的传递集合U,使得(∪,∈)以最好的方式满足ZFC公理:它包含每个元素的幂集( powerset),且对于任何从 ∪ 的一个元素到 ∪ 的函数,其值域仍是 ∪ 的一个元素.这就比仅仅说(∪,∈)满足ZFC公理强得多我们不是仅说当所有量词( quantifier)为相对U时幂集公理“每个集合有幂集”为真.而是要求“对每个集合x ∈ ∪,x的幂集仍在U中 ”,在这里x的幂集的定义中没有一个量词是相对于 ∪ 的.看起来像 x 在 ∪ 内部的幂集的东西必须是在更大的集合环境中看起来是x的幂集.类似地,关于函数的像集的条件也比(U,∈)满足相对于 ∪ 的替代公理范式( replacement axiom scheme)更强.这一条件说任何从 ∪ 的一个元素到 ∪ 的函数,如果在更大的集合环境领域中存在,则它本身是 ∪ 的一个元素.这个附加的强度保证了应用于 ∪ 中的集合的任何集合论构造,无论它是在 ∪ 的内部还是在更大的集合论域中,都将____________

译自: The Bulletin of Symbolic Logic, Vol 16 (2010),No.3, p.359-377, What does it take to prove Fermat's last theorem? Grothendieck and the logic of Number theory,Colin Mclarty. Copyright Ⓒ2010 the Association for Symbolic Logic. Reprinted with permission. All rightseserved.符号逻辑学会与作者授予译文出版许可.

Colin Mclarty是美国 Case Western Reserve大学的哲学系和数学系教授.他的邮箱地址是colin. mclartycase

[1]参阅 Grothendieck[1971]以及更完整的叙述 Artin et al.[1972,vol.I1p.185-217].我们把这些书分别简写为SGA1和SGA 4.─原注

第二方案:格罗滕迪克宇宙的定义

ZFC宇宙v的子类u是格罗滕迪克宇宙:

  1.如果x∈u,y∈x,则y∈u(关于∈的推移性)

  

  2.如果x,y∈U,则{x,y}∈U(关于配对的结构是闭合的)

  

  3.如果x∈U,则Pow(x)∈u(关于幂集合是闭的)

  

  4.l∈U,f:l→U,则∪(f)∈U(关于族的合并是封闭的)

  

  5.U∈V(V的元素)

  

  6.ω∈U(具有无穷集)∪(f)是∪i∈lf(i)的缩写。

  

  ω是集个自然数的集合。

  

  如果去掉第五个条件U∈V,v本身就是格罗滕迪克宇宙。

  

  但是,格罗滕迪克宇宙“不过大”是个迷,所以小〈smallness〉的条件有U∈V。

  

  low〈Zhen Lin low〉把去掉最后ω∈U的东西称为预宇宙〈pre-universe〉。

  

  空类(空集合)成为预宇宙(虽然是虚的例子)。

  

  也可以制作只包含有限集合的预宇宙。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

第二孤岛 连载中
第二孤岛
告别月亮
【第一人称+虚构+日常风】我做了一个梦,梦到了一个人。她说她叫云阿想,所以我迷了路。一个凋零的梦,一个思乡的人,没有人有过错,只是都困在了生......
0.2万字9个月前
神呐,为什么只有我会遇到渣男 连载中
神呐,为什么只有我会遇到渣男
秋名山白老板
什么?完成任务?撕渣男?
7.5万字8个月前
永恒破败失落之地 连载中
永恒破败失落之地
书奶
1.0万字8个月前
省拟,改变 连载中
省拟,改变
刀子比糖香
本文主要写省拟,主cp冀豫,穿越文,踩雷勿入,封面用得某个太太画的画
0.5万字8个月前
青腾恋爱之旅 连载中
青腾恋爱之旅
唯爱腾蛇
腾蛇与青龙
1.9万字8个月前
这个农女不好惹 连载中
这个农女不好惹
背笔疯
(随身空间,种田,爽文,囤物资,不圣母)故事纯属虚构,外加胡篇乱造,如有雷同,纯属巧合。
3.1万字8个月前