数学联邦政治世界观
超小超大

特殊篇章完整版集合论序列(公理) (14-12)

最后,我们证明 n1 = m1[G1],由定理2.2.16,我们只需证明 m1 ⊆ n1, G0 ∈ n1,并且 n1 所有元素,都是从 G0 和 m1 中参数可定义的。 m1 ⊆ n1、 G0 ∈ n1,由 N ╞ N0 = m0[G0],存在公式 ψ 及参数 b ∈ m1 使得 N ╞ ┌n0 ╞ ∃!y(ψ(y,b,G0) Λ x = y)¬。因而 n1 ╞ ∃!y(ψ(y,b,G0) Λ x = y).

(5)嵌入回溯公理。给定模型 m11 ∈ M1,公式 φ1,φ2 和参数 a,b ∈ m11。假设 m11 认为:“ j01 (其中 j11 = {x ∈ m11 | m11 ╞ φ1[x,α]}) pilz,o]})是从自身到模型 m02 = {x ∈ m11 | m11 ╞ φ2[x,b]} 的 Σ0 初等嵌入.”我们把引号中的公式(集)记为 ψ[a,b],则 m11 ╞ ψ[a,b]. 由(5.2.1), N ╞ ┌m01 ╞ ψ[a,b]¬. 再由注 5.2.3, N 认为 j1 确实是初等嵌入,由 N 中的回溯嵌入公理,存在 N 中 m00 以及参数 a0,b0,使得

N ╞ m00 ∈ M0 Λ a0,b0 ∈ m00 Λ ┌m00 ╞ψ[a0,b0]¬

Λ j00(a0) = a Λ j00(b0) = b Λ m01 = {x ∈ m00 ╞ φ2[x,b0]}

其中, j00 是模型 m00 中由公式 φ1 和参数 a0 定义的.

我们有, m10 ∈ M1;类似(5.2.2), m11 = {x ∈ m10 | m10 ╞ φ2[x,b0]},是模型 m10 中参数定义的类;在 m10 看来, j10 = {x ∈ m10 | m10 ╞ φ1[x,a0]}是

从自身到 m11 的初等嵌入,即 m10 ╞ ψ[a0,b0];并且 j10(a0) = a,j10(b0) = b,从而 j10(j10) = j11.

定理 5.2.11(主定理)假设存在一个不可达基数 κ. 令 M = CCSMVκ(ZPC+Con(ZFC))是 Vκ 中所有可数的可计算饱和的 ZFC + Con(ZFC)模型组成的集合,则

MM = {CCSMN(ZFC) | N ∈ M}.

是由复宇宙组成的集合,且满足复复宇宙公理.

证明首先,由于 κ 是不可达基数,那么 Vκ 是 ZFC 的模型.由向下的 Lowenheim-Skolem 定理,存在一个 ZFC 的可数模型 (ω,R). 显然,该模型也在 Vκ 中,因此, Vκ 也是 ZFC + Con(ZFC) 的模型。类似地,我们可以迭代任意有穷次,如 Vκ ╞ ZFC + Con(ZFC + Con(ZFC)).

又由可计算饱和模型存在定理(参见[3,112), M非空.

对任意 N ∈ M, N 是ZFC+Con(ZFC)的模型。由定理 5.2.5,CCSMN(ZFC)的复宇宙,由于可计算饱和模型都是非良基的,在 N 看来 CCSMN(ZFC) 中的模

型都是非良基的。由引理 5.2.10,从外面看, CCSMN(ZFC) 也确实是复宇宙.

现在我们只需要证明存在一个 MM 中的一个复宇宙,而 N 是其中的一个元素.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

那片星空只有你 连载中
那片星空只有你
星空安然
纯属虚构,随意随意。
0.1万字6个月前
养老日常 连载中
养老日常
意小芸
求鲜花作者在改文章作者又回来了主打养老
1.1万字6个月前
浩桐,温馨婚后日常 连载中
浩桐,温馨婚后日常
心寂情殇
转载文,原作者:wuli微雨轻尘《温馨向婚后日常》甜宠不虐,保准甜到掉牙。狗粮颇丰,单身慎入!
2.9万字5个月前
小石寥寥 连载中
小石寥寥
梧桐妹
小石头寥寥因缘际会之下与仙界月神双修了,也因此展开了一场甜蜜的恋爱。恋爱的过程总总有些反派会到处出没,所以我们寥寥受伤了,需要大量的功德之力......
18.9万字5个月前
(不羡仙) 连载中
(不羡仙)
柑橘不是橘
本文五个男主,所以不知道女主到底会跟哪一个男主在一起反正现在还不知道,进入小说世界其实是一个迷主要不知道到底是谁写的这本小说,女主是成长型,......
50.2万字5个月前
花园宝宝:关于花园里的爱恨情仇 连载中
花园宝宝:关于花园里的爱恨情仇
玛卡巴卡的鸭梨
【关于一群非人生物的日常生活】
2.5万字5个月前