数学联邦政治世界观
超小超大

特殊篇章完整版集合论序列(公理) (14-11)

就像复宇宙公理对复宇宙的描绘,其中的集合论宇宙没有哪个是特别的,对任何集合论宇宙都存在着“更好的”宇宙能看到前者的局限性,复复宇宙公理表达的是每个复宇宙也都不是特别的,并且总存在“更发达的”复宇宙,在它们看来前者只是一个“玩具”复宇宙.

类似定理 5.2.5,在一个不太强的假设之下,我们同样可以证明复复宇宙公理也是一致的.

引理 5.2.10 令 N 是 ZFC + Con(ZFC) 的模型,则 N 中的复宇宙 M0 从外面看仍然是一个复宇宙,即 M1 = {(m1,E1) | N ╞ (m0,E0) ∈ M1} 是一个复宇宙.

证明(1)可数化公理.给定 (m1,E1) ∈ M1。由 N 中的可数化公理,存在 n0,F1,有

N ╞ (n0,F0) ∈ M0Λ┌(n0,F0) ╞ m0 是可数的¬.

由定义, (n1,F1) ∈ M1:由(5.2.1), (n1,F1) ╞ m0 是可数的,由注 5.2.2,我们说 m1 是 n1 中的一个可数集合.

类似地,我们也有 (2) 伪良基公理.

(3) 可实现公理,给定 (m1,E1) ∈ M1、α ∈ m1 以及公式 φ(v1,v2),由 N 中的可实现公理,存在 n0 ∈ N,使得

N ╞ n0 = {x ∈ m0 | (m0,E0) ╞ φ[x,α]}

Λ(n0,E0) ∈ M0

所以,我们有(n1,E1) ∈ M1:并且对任意 x ∈ m1 ⊆ N,

x ∈ n1 ⇔ N ╞ x ∈ n0

(5.2.2) ⇔ N ╞ ┌(m0,E0) ╞ φ[X,α]¬

⇔ (M1,E1) ╞ φ[x,α]

可得 n1 = {x ∈ m1 | (m1,E1) ╞ φ[x,α]} 是模型 m1 中参数可定义的类:又由(5.2.1), (m1,E1) ╞ ┌(n0,E0) ╞ ZFC¬,因此我们说 (m1,E1) 认为 (n1,E1) 是一个ZFC 模型.

(4)力迫扩张公理,给定模型 m1 ∈ M1,公式 φ 和参数 α ∈ m1,φ(x,α)在 m1 中

定义了一个偏序 P1。由 N 中的力迫扩张公理,存在 N 中的 n0,G0,使得

N ╞ n0 ∈ M0ΛG0 是 P0 上的m0 脱殊滤 Λn0 = m0[G0]

首先,我们有 n1 ∈ M1.

其次,我们希望 G1 = {x ∈ N | N ╞ x ∈ G0} 是 P1 的 m1 脱殊滤,容易证明, G1 是 P1 上的滤。现任给 D0 ∈ m1,使得 D1 = {x ∈ m1 | m1 ╞ x ∈ D0} 是 P1 的稠密子集。则 m1 ╞ D0 是 P0 上的稠密子集。因而 N ╞ ┌m0 ╞ D0 是 P0 上的稠密子集¬。由于 N 认为 G0 脱殊,故 N ╞ D1N = {x ∈ m1 | m0 ╞ x ∈ D0} ∩ G0 ≠ Ø,即存在 x ∈ N, N ╞ x ∈ G0 且 N ╞ ┌m0 ╞ x ∈ D0¬ (即 m1 ╞ x ∈ D0),因此 G1 ∩ D1 ≠ Ø.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快穿之宿主又飘了 连载中
快穿之宿主又飘了
执子右zzyo
【1v1双洁,男女主都是同一人】【Bad】一个深夜聊sao的文社√位面一:真假千金肤白貌美假千金VS落魄心机大反派(已完结)位面二:重生逆袭......
34.5万字5个月前
神界直播间戴莹 连载中
神界直播间戴莹
诗月桐
0.6万字5个月前
世子爷,你命中缺我! 连载中
世子爷,你命中缺我!
亮晶晶2
白明锦穿到长宁侯府被抱错的真千金身上,睁开眼就被扇了一个耳光,说她勾引人家的丈夫? 作为千年玄门最有天赋的弟子,这能忍? 一看面相,白明锦当......
101.6万字5个月前
终章未完 连载中
终章未完
财神独生女
做梦的脑洞
0.4万字5个月前
白蛇浮生3 连载中
白蛇浮生3
二零一四
讲的是白娘子与许仙的爱情故事,令人感到不已
0.8万字5个月前
反派Boss要逆袭 连载中
反派Boss要逆袭
寒冬未至
7.1万字5个月前