数学联邦政治世界观
超小超大

特殊篇章完整版集合论序列(公理) (14-11)

就像复宇宙公理对复宇宙的描绘,其中的集合论宇宙没有哪个是特别的,对任何集合论宇宙都存在着“更好的”宇宙能看到前者的局限性,复复宇宙公理表达的是每个复宇宙也都不是特别的,并且总存在“更发达的”复宇宙,在它们看来前者只是一个“玩具”复宇宙.

类似定理 5.2.5,在一个不太强的假设之下,我们同样可以证明复复宇宙公理也是一致的.

引理 5.2.10 令 N 是 ZFC + Con(ZFC) 的模型,则 N 中的复宇宙 M0 从外面看仍然是一个复宇宙,即 M1 = {(m1,E1) | N ╞ (m0,E0) ∈ M1} 是一个复宇宙.

证明(1)可数化公理.给定 (m1,E1) ∈ M1。由 N 中的可数化公理,存在 n0,F1,有

N ╞ (n0,F0) ∈ M0Λ┌(n0,F0) ╞ m0 是可数的¬.

由定义, (n1,F1) ∈ M1:由(5.2.1), (n1,F1) ╞ m0 是可数的,由注 5.2.2,我们说 m1 是 n1 中的一个可数集合.

类似地,我们也有 (2) 伪良基公理.

(3) 可实现公理,给定 (m1,E1) ∈ M1、α ∈ m1 以及公式 φ(v1,v2),由 N 中的可实现公理,存在 n0 ∈ N,使得

N ╞ n0 = {x ∈ m0 | (m0,E0) ╞ φ[x,α]}

Λ(n0,E0) ∈ M0

所以,我们有(n1,E1) ∈ M1:并且对任意 x ∈ m1 ⊆ N,

x ∈ n1 ⇔ N ╞ x ∈ n0

(5.2.2) ⇔ N ╞ ┌(m0,E0) ╞ φ[X,α]¬

⇔ (M1,E1) ╞ φ[x,α]

可得 n1 = {x ∈ m1 | (m1,E1) ╞ φ[x,α]} 是模型 m1 中参数可定义的类:又由(5.2.1), (m1,E1) ╞ ┌(n0,E0) ╞ ZFC¬,因此我们说 (m1,E1) 认为 (n1,E1) 是一个ZFC 模型.

(4)力迫扩张公理,给定模型 m1 ∈ M1,公式 φ 和参数 α ∈ m1,φ(x,α)在 m1 中

定义了一个偏序 P1。由 N 中的力迫扩张公理,存在 N 中的 n0,G0,使得

N ╞ n0 ∈ M0ΛG0 是 P0 上的m0 脱殊滤 Λn0 = m0[G0]

首先,我们有 n1 ∈ M1.

其次,我们希望 G1 = {x ∈ N | N ╞ x ∈ G0} 是 P1 的 m1 脱殊滤,容易证明, G1 是 P1 上的滤。现任给 D0 ∈ m1,使得 D1 = {x ∈ m1 | m1 ╞ x ∈ D0} 是 P1 的稠密子集。则 m1 ╞ D0 是 P0 上的稠密子集。因而 N ╞ ┌m0 ╞ D0 是 P0 上的稠密子集¬。由于 N 认为 G0 脱殊,故 N ╞ D1N = {x ∈ m1 | m0 ╞ x ∈ D0} ∩ G0 ≠ Ø,即存在 x ∈ N, N ╞ x ∈ G0 且 N ╞ ┌m0 ╞ x ∈ D0¬ (即 m1 ╞ x ∈ D0),因此 G1 ∩ D1 ≠ Ø.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

穿进恐游里,意外攻略杀人魔 连载中
穿进恐游里,意外攻略杀人魔
一只兔小小
姜念,一位普通的大学生,意外穿越到一个名为“死亡游戏”的恐怖游戏世界中。在这个充满未知与危险的游戏世界里,她必须解开重重谜题,战胜恐怖的挑战......
0.7万字6个月前
零契 连载中
零契
时晟晟
神明的周身环绕着不同于往日的光辉,她微微一笑,知道自己这次,赌对了
5.2万字6个月前
rainimator——Ceris:救赎 连载中
rainimator——Ceris:救赎
厌01
她再次看向她,心中早已有所改变“你是谁”“心中阴暗面罢了”(文笔烂,勿喷)
0.3万字6个月前
凤铃 连载中
凤铃
莫珣兮
她本是街头乞讨的小孤儿,每天除了要饭最喜欢的事就是听包子铺里的小姐姐手机里放的小说故事了。意外穿越成“千万宠爱”的小公主,本以为可以开启悠闲......
14.9万字6个月前
排球少年观影体! 连载中
排球少年观影体!
心动づ婷🎄
排球少年观影体,有cp
1.1万字6个月前
就算是霸总也不行 连载中
就算是霸总也不行
real&플라톤 사랑
草根逆袭记啊!草根出身的我林子轩本觉得这辈子就这么安稳地混吃等死就行了,结果却因右手臂上的一个胎记被人给强行掳走。本天不怕地不怕的她肯定得跑......
7.1万字6个月前