数学联邦政治世界观
超小超大

第八章拓扑空间上的Choquet Game (2-1)

EDST后面势必要进入Game theory,这里熟悉一下game的基本套路。

定义1:给定一个拓扑空间X ,A ⊂ P(X) 为 X 的非空子集的族。定义 A 上的Choquet game C(A) 为一个两个人的游戏, l 和 ll ,其中 l 先手,枚举一个 A₀ ∈ A ,然后 ll 枚举一个 B₀ ⊆ A₀ ,继续 l 枚举一个 A₁ ⊆ B₀ ,……,这样交替下去直到无穷,满足 Aₙ ⊇ Bₙ ⊇ Aₙ₊₁,∀n 。现在我们说玩家 l l 赢得游戏当且仅当 ∩ₙ Aₙ=∩ₙ Bₙ ≠ ∅ 。我们称一局比赛是指两个玩家交替枚举之后得到的无穷序列 (A₀,B₀,A₁,B₁,· · ·) 。

l A₀ A₁ · · ·

l l B₀ B₁ · · ·

Choquet Game

也就是说,玩家l l 希望最终的交集非空,玩家 l 则希望为空。两个玩家的区别仅仅是谁先手谁后手。

定义2:玩家l 的一个策略是指一系列函数 {fₙ}ₙ∈ω ,使得 dom(fₙ)={(A₀,B₀,· · ·,Aₙ₋₁,Bₙ₋₁):(∀i<n – 1)Aᵢ ∈ A ∧ Aᵢ ⊇ Bᵢ ⊇ Aᵢ₊₁} 而且 A ∋ fₙ(A₀,B₀,· · ·,Aₙ₋₁,Bₙ₋₁) ⊆ Bₙ₋₁也就是说, fₙ 给出了玩家 l 在第n阶段依据前面所有信息应该枚举的元素。类似的可以定义玩家 l l 的策略。

定义3:称玩家l 有一个必胜策略,当且仅当存在 l 的策略 {fₙ} 使得只要玩家 l 严格按照这个策略玩,不论玩家 l l 出什么, l 总会赢得游戏。玩家 l l 有一个必胜策略的定义类似。

下面是一个有趣的定理。

定理(Oxtoby):任给一个拓扑空间X ,令 A 为 X 的所有非空开集的族。那么Choquet game C(A) 的玩家 l 没有必胜策略当且仅当 X 是Baire空间当且仅当 X 的任何可数个稠密开集的交是稠密的。

proof:假设 X 不是Baire空间,则存在一个非空开集 U₀ 和一列稠密开集 {Oₙ}ₙ∈ω 使得 ∩ₙOₙ∩U₀=∅。下面我们来构造 l 的一个必胜策略。 l 先手枚举 U₀ ,在第n>0阶段,我们已经有了 (U₀,V₀,· · ·,Uₙ₋₁,Vₙ₋₁) ,这时,因为 Oₙ₋₁ 是稠密开的,所以 Oₙ₋₁∩Vₙ₋₁ ≠ ∅ 为开集,这时 l 枚举 Uₙ=Oₙ₋₁∩Vₙ₋₁ 。根据这个策略,最终有 ∩ₙUₙ ⊆ (∩ₙOₙ) ∩ ∪₀=∅。所以根据这个策略玩家 l 必胜。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

无垠虚幻 连载中
无垠虚幻
小福叠
在一个普通的早晨,在不同地区,同时在地铁上的九人意外进入了异世界——“无垠虚幻”。他们分别是高中刚毕业的谢浮白;海归博士南宫秋;企业高层领导......
0.9万字4个月前
圣星探团 连载中
圣星探团
138***533_0411367980
在2205年有些人类进化出了异能,也自然出现了很多正义或邪恶的组织在正派中最有名的便是圣星探团,而她们的敌人是强大、邪恶又神秘的———赤血帮......
0.1万字4个月前
狼王梦—重生夺王 连载中
狼王梦—重生夺王
风火小哪吒
紫岚、黑仔和蓝魂儿重生了,而且要成为狼王,他们成功了吗?
1.0万字4个月前
他的眼里是有星星的 连载中
他的眼里是有星星的
糯糯一云朵
(作品已签约)讲述的是大联盟第一守护者林沐星和狐族传说中的智者段繁的故事。本人文笔渣,写的不好,不过还是欢迎小伙伴们来看的。
11.0万字4个月前
当徒弟成为魔尊以后 连载中
当徒弟成为魔尊以后
天无留客雨
当徒弟成为魔尊以后,第一件事当然是向师尊复仇……(双男主)
19.0万字4个月前
凤栖梧桐花时雨 连载中
凤栖梧桐花时雨
冰水寒心
世人皆知四神兽,青龙白虎朱雀玄武,无人知晓凤凰曾经也为世界做出过牺牲……“神主!玄灵大陆发生了什么事!那里快要崩塌了,你不管管吗?”“物竞天......
3.8万字4个月前