塞瓦定理

Ceva's theorem

If the straight lines joining the vertices A,B,C of a triangle to a point O of its plane meet the opposite sides at P,Q,R,then

BP CQ AR

── · ── · ──=1

PC QA RB

pf:ThroughO draw a line LMN parallel to BC , meeting BC at L∞ , CA at M,AB at N . Then the ranges (BPL∞C),(QAMC) are perspective from O. Hence

BP · L∞C BP QA · MC

─────=──=────

BC · L∞P BC QC · MA

Similarly(CPL∞B),(RANB) are perspective from O . Hence

CP · L∞B CP RA · N∞B

─────=──=─────

CB · L∞P CB RB · N∞A

BP QA CM RB AN

──=── · ── · ── · ──

PC CQ MA AR NB

Notice that AN:NB=AM:MC,we're done.

(本章完)

相关推荐