其次,在弦的各种可能的振动模式中,有一种模式恰好能够描述引力场对应的量子粒子的性质。
在弦论之前,科学家就预言有引力场对应的粒子叫做引力子,这种引力子必然没有质量,不带电荷,其中一种量子力学性质必然是自旋为2。
弦振动模式的清单上正好有一种能够满足引力子所要求的性质。
引力子的出现或许能够提供人们追寻已久的量子引力理论。
关于弦理论,还有个重要的东西就是额外维度。
可能大家基本上都听说过“四维空间”、“多维空间”、“十一维空间”之类的词,也对这些高维空间充满着好奇。
其实这些在弦论里叫做额外维度。
额外维度蜷缩在极其微观的层面上,成很小的一团,所以很难被我们看到。
举个例子,有根长长的吸管,像东方明珠一样笔直地耸立着,高耸入云,我们从很远的地方看这根吸管,看到的只是一条线状,并不能看到吸管还有个圆形的小维度,虽然这个维度存在于吸管垂直方向的每一处,于是我们会错误的认为,遥远的这根吸管是1维的,而不是2维的。
当然这只是个例子哈,如果某个物体真的是1维的,那么它是无法反射光子,我们也无法看到的。
上面说的“看到”是指用各种仪器或者其他方法检测到。
再打个比方,比如你乘坐飞机经过某个很宽广平坦的地形,地面上铺着一张巨大的地毯,你从飞机上往下看,会直接得出结论,说这个地毯是2维的,但如果你从飞机上下来,近距离观察这个地毯,你会发现其实地毯上有绒面——平坦的地毯上,每一点都附着毛茸茸的小圈棉花。
地毯上有两个显而易见的维度,但还有一个不易发现的维度。
弦理论家们认为空间也是如此,空间远远不止3个维度,那些额外的空间维度蜷缩起来,变得格外微小,只有原子的数百万甚至数十亿分之一,以我们现在的技术,无论如何也检测不到蜷缩的维度。
那么一些人口中所说的多维时空是怎么回事呢?
也就是假如时间算1维,空间有9个维度的话,那么弦理论的某个方程就显得非常合理了。
用最简单最简单的方法来说明就是——(D-10)乘以(麻烦)。
D代表的就是时空的维数。
如果宇宙中只有3个空间维,1个时间维的话,那么这个方程就会出现麻烦,变得不合理,物理学家们就假设有十维时空,这样(D-10)就等于0,0乘以任何数都得0,这样的话,麻烦就消失了。
但是值得注意的是别想当然的以为弦理论的方程就做做加减法,以上只是个形象生动的例子而已,这个例子也告诉我们,关于多维空间的概念,还停留在数学计算中,大家想象不出来多维空间是什么个鬼样子很正常。
前面说过,基本粒子的性质(比如质量和电荷)由弦的振动模式决定,而研究额外维度之后,我们会发现真正决定这些性质的其实是额外维度的大小和形状。
弦是如此的微小,它们并不只在日常经验的3个宏观维度中振动,而且它们也会在蜷缩的微观维度中振动。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。