数学联邦政治世界观
超小超大

伪证 (2-1)

许多悖论都可以视为不加限制地使用逻辑, 得到对矛盾的伪证.

1. 小试牛刀: 说谎者悖论

"这句话为假." 这句话的存在本身就能导出矛盾.

• 如果这句话是真的, 那么根据它的内容, 它是假的.

• 如果这句话是假的, 那么它必须是真的.

因此这句话既真又假, 矛盾.

2. 强说谎者悖论

对说谎者悖论的一个自然的补丁是认为自然语言中有些句子是无意义的. "我在说谎"这句话就是无意义的. 但这个补丁只是把自然语言的真值扩展到了三值: 真, 假, 无意义. 它完全没有解决这个悖论. 考虑 "这句话为假或者无意义".

• 如果这句话为真, 那么它为假或无意义.

• 如果这句话为假或无意义, 那么它为真.

因此这句话既是真的, 也或者为假, 或者无意义, 矛盾.

3. Curry 悖论

Curry 悖论似乎允许我们证明任何命题. 下面我们试着证明荒谬的0=1.

考虑这句话: "如果这句话是真的, 那么0=1." 记之为 k, 于是 k 所说的就是:如果 k 为真, 那么 0=1.

1. 如果 k 为真, 那么平凡地, k 为真.

2. 在 1 中展开 k 的定义得到, 如果 k 为真, 那么如果 k 为真, 那么 0=1.

3. 综合 1, 2 得到:如果 k 为真, 那么 0=1.

4. 但 3 就是 k! 所以 k 是真的.

5. 综合 3, 4 得到:0=1.

4. Tarski 真不可定义性

The best part of this unified scheme is that it shows that there are really no paradoxes. There are limitations. Paradoxes are ways of showing that if you permit one to violate a limitation, then you will get an inconsistent systems.[1]

将上面的悖论形式化到一阶算术, 就能得到著名的 Tarski 定理. 固定一个算术公式到自然数的Gödel 编码 φ(x)↦⌜φ(x)⌝.

Theorem. (Tarski) 集合 {n∈ℕ│n } 在算术语言中是不可定义的.

Proof. 假设它被公式 T(x) 定义. 固定一个函数 D:ℕ → ℕ, 使得对任意公式 φ(x),D(⌜φ(x)⌝)=⌜φ(⌜φ(x)⌝)⌝. 显然存在这样的递归函数, 因此它是可表示的.

定义公式G(x) 为 ¬T(D(x)), 则公式 G(⌜G(x)⌝) 便是"我在说谎":G(⌜(G(x)⌝) ⇔ ¬T(D(⌜G(x)⌝)) ⇔ ¬G(⌜G(x)⌝)矛盾. □

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

海的尾声 连载中
海的尾声
融铸
女主是人鱼,男主是人类,两人是青梅竹马,男主因为一次意外瞎了眼,男女主慢慢对女主产生感情,可他们终究不能在一起,不仅来自父母的压力,也是因为......
0.1万字9个月前
所有书的番外 连载中
所有书的番外
莺啼月洛
本文包含作者写的所有书,此文因为是番外,所以不长更
2.7万字8个月前
末日之我是主宰 连载中
末日之我是主宰
雪碧加可乐
我空间管理者,发现有人不顾规则打破空间从而来管理一下越世者,谁知被暗算,只能稍微的伪装一下下啦呵,规则,什么是规则,我,就是规则“可是守护原......
0.5万字8个月前
木兰歌 连载中
木兰歌
冰心幽兰
花木兰百年之后飞升仙界,感慨生前杀孽太重,想要行善弥补。恰好她以前战死的战友们也飞升仙界,成了天兵天将之一。不过,他们身上和灵魂上多多少少还......
12.2万字8个月前
天乩之前世今生 连载中
天乩之前世今生
墨存非晚
《天乩之白蛇传说》系列文【甜】「相公,你走了,我该怎么活在这个世上?」「桃花林开,西湖水干,雷峰塔倒,断桥之约,定会相赴!」前世↑「你是上仙......
2.7万字8个月前
我是个位商叛徒 连载中
我是个位商叛徒
云墨奏丝竹
【本文为作者本站首发原创文,已签约,禁止抄袭,禁止转载】无奸不商?归海苌昇狠狠地一脚踹飞了那四个字,作为一个曾经被位面奸商压迫到吐血的可怜娃......
19.5万字8个月前