数学联邦政治世界观
超小超大

逻辑学 (2-1)

为审慎起见,答案自带数学证明:

1)设x为任意个体变元,P(x)与Q(x)分别为定义x的命题,则当P(x)与Q(x)不等价时,有

(∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

即概念的定义不等价必导致推理结论不一致,因而矛盾律必须被遵守.

证明(李,2023):设H为表征变元为重言式的谓词,则由蕴含的传递性及充分条件与必要条件的关系,有

(∀x)P(x)⇎Q(x)

⇒ (∀x)¬H(P(x)↔Q(x))

⇒ (∀x)Q(x)↛P(x)

⇒ (∀x)¬(P(x)↔Q(x))

⇒ (∀x)(Q(x)⊬P(x))

⇒ (∀x)(Q(x)⊬P(x))→Q(x) ⊬ S(x)

⇒ (∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

Q.E.D.

2)设S为表征变元不服从矛盾律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违矛盾律则世无假话或世无真话.

证明(李, 2023):设Z为表征变元满足必有一假的二元谓词,Ç为表征变元同真或同假的二元谓词,则

(∀x)S(P(x), ¬P(x))

⇒ (∀x)¬Z(P(x), ¬P(x))

⇒ (∀x)Ç(P(x), ¬P(x))

⇒ (∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

Q.E.D.

3) 设S⁺为表征变元不服从排中律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违排中律则世无假话或世无真话.

证明(李,2019):设Z⁺为表征变元满足必有一真的二元谓词,Ç⁺为表征变元同真或同假的二元谓词,则

(∀x)S⁺(P(x), ¬P(x))

⇒ (∀x)¬Z⁺(P(x), ¬P(x))

⇒ (∀x)Ç⁺(P(x), ¬P(x))

⇒ (∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x))

Q.E.D.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

零契 连载中
零契
时晟晟
神明的周身环绕着不同于往日的光辉,她微微一笑,知道自己这次,赌对了
5.2万字1个月前
钻石联盟 连载中
钻石联盟
白梓萱54341348
看就行了
0.0万字1个月前
魔幻图书馆 连载中
魔幻图书馆
沙雕灵域
每一本书都有一个故事,每一个书架都有亿万本书
14.3万字1个月前
快穿:请先说你好 连载中
快穿:请先说你好
南溟北辰
【本文已签约,禁止转载或抄袭!】你说过的,你一直都在,不曾远离嗯,一直都在…可终究离去了
3.2万字1个月前
每一世都与你肩并肩 连载中
每一世都与你肩并肩
掐你肉肉
因为一次意外,易谦江毁了整个世界,步摇为了保护他不幸受伤,在治疗的时候却无意中变成了一个合成灵魂。然而众人发现这一切似乎不是意外……
11.4万字1个月前
幻世尘缘:彼岸神眷 连载中
幻世尘缘:彼岸神眷
夜楹曦梦
七罪与七美的界限从未清晰,希冀与灾朔并肩而行。破碎的时光梦境里,蔷薇花绽放至陌路荼靡,又是谁向死而生,残响折翼。……在前往精灵之森的时空通道......
12.9万字1个月前