数学联邦政治世界观
超小超大

逻辑学 (2-1)

为审慎起见,答案自带数学证明:

1)设x为任意个体变元,P(x)与Q(x)分别为定义x的命题,则当P(x)与Q(x)不等价时,有

(∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

即概念的定义不等价必导致推理结论不一致,因而矛盾律必须被遵守.

证明(李,2023):设H为表征变元为重言式的谓词,则由蕴含的传递性及充分条件与必要条件的关系,有

(∀x)P(x)⇎Q(x)

⇒ (∀x)¬H(P(x)↔Q(x))

⇒ (∀x)Q(x)↛P(x)

⇒ (∀x)¬(P(x)↔Q(x))

⇒ (∀x)(Q(x)⊬P(x))

⇒ (∀x)(Q(x)⊬P(x))→Q(x) ⊬ S(x)

⇒ (∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

Q.E.D.

2)设S为表征变元不服从矛盾律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违矛盾律则世无假话或世无真话.

证明(李, 2023):设Z为表征变元满足必有一假的二元谓词,Ç为表征变元同真或同假的二元谓词,则

(∀x)S(P(x), ¬P(x))

⇒ (∀x)¬Z(P(x), ¬P(x))

⇒ (∀x)Ç(P(x), ¬P(x))

⇒ (∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

Q.E.D.

3) 设S⁺为表征变元不服从排中律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违排中律则世无假话或世无真话.

证明(李,2019):设Z⁺为表征变元满足必有一真的二元谓词,Ç⁺为表征变元同真或同假的二元谓词,则

(∀x)S⁺(P(x), ¬P(x))

⇒ (∀x)¬Z⁺(P(x), ¬P(x))

⇒ (∀x)Ç⁺(P(x), ¬P(x))

⇒ (∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x))

Q.E.D.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

短向故事 连载中
短向故事
饱饱՞⸝⸝'ᜊ'⸝⸝՞
本篇是短向小故事,记录我突如其来的灵感,什么文章都会有,敬请期待吧!
0.4万字6个月前
带着空间的若曦重来一世 连载中
带着空间的若曦重来一世
缥缈的紫萝
因张晓在次穿越回大清,改变了书中的历史走向,在家闲着没事的肖战,偶然发现,《步步惊心》小说的分类,于是,肖战一行人来到《步步惊心》小书的世界......
61.6万字5个月前
航天学院喜会长 连载中
航天学院喜会长
喜初黎
0.4万字5个月前
九重诀 连载中
九重诀
付玖柒
【原创小说,已签约,一旦发现抄袭必定举报。本小说分为三部曲写作,第一世人间篇,可攻略男主:沐风,无夜,扶苏,隐藏可攻略男主莫惜。第二世九重篇......
18.0万字5个月前
腹黑宝宝通灵娘 连载中
腹黑宝宝通灵娘
兮九
【(已完结)气泡版。原创作品,禁止转载,禁止抄袭。】她,鬼门之后,却因一次意外的事故,穿越至一个不熟悉的朝代,成为丞相府的废材三小姐,这就算......
20.6万字5个月前
金银雨娜转世恋 连载中
金银雨娜转世恋
我是你老师
双龙合并,龙神降世
0.8万字5个月前