数学联邦政治世界观
超小超大

逻辑学 (2-1)

为审慎起见,答案自带数学证明:

1)设x为任意个体变元,P(x)与Q(x)分别为定义x的命题,则当P(x)与Q(x)不等价时,有

(∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

即概念的定义不等价必导致推理结论不一致,因而矛盾律必须被遵守.

证明(李,2023):设H为表征变元为重言式的谓词,则由蕴含的传递性及充分条件与必要条件的关系,有

(∀x)P(x)⇎Q(x)

⇒ (∀x)¬H(P(x)↔Q(x))

⇒ (∀x)Q(x)↛P(x)

⇒ (∀x)¬(P(x)↔Q(x))

⇒ (∀x)(Q(x)⊬P(x))

⇒ (∀x)(Q(x)⊬P(x))→Q(x) ⊬ S(x)

⇒ (∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

Q.E.D.

2)设S为表征变元不服从矛盾律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违矛盾律则世无假话或世无真话.

证明(李, 2023):设Z为表征变元满足必有一假的二元谓词,Ç为表征变元同真或同假的二元谓词,则

(∀x)S(P(x), ¬P(x))

⇒ (∀x)¬Z(P(x), ¬P(x))

⇒ (∀x)Ç(P(x), ¬P(x))

⇒ (∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

Q.E.D.

3) 设S⁺为表征变元不服从排中律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违排中律则世无假话或世无真话.

证明(李,2019):设Z⁺为表征变元满足必有一真的二元谓词,Ç⁺为表征变元同真或同假的二元谓词,则

(∀x)S⁺(P(x), ¬P(x))

⇒ (∀x)¬Z⁺(P(x), ¬P(x))

⇒ (∀x)Ç⁺(P(x), ¬P(x))

⇒ (∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x))

Q.E.D.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

噩梦惊醒的时候我还没醒 连载中
噩梦惊醒的时候我还没醒
呵呵嘿嘿嘻嘻哈哈
一个罪恶的故事,谁都不是好人
1.7万字1个月前
快穿:又被攻略目标们撩爆了 连载中
快穿:又被攻略目标们撩爆了
庭归五竹
【男主人数不定✘沉浸式✘无固定男主✘女主绝美✘无脑文✘文中三观不代表作者三观】夏淼淼遇到一个叫小水的系统,小水告诉夏淼淼,它可以带夏淼淼去各......
0.2万字1个月前
全家追着我宠 连载中
全家追着我宠
熙熙熙熙熙熙熙柚
可惜别人一开始都是刷副本,而我躺在床上副本也就刷完了
0.0万字1个月前
十二星魂之寒冰烈火的诅咒 连载中
十二星魂之寒冰烈火的诅咒
钟璃琉绣
引子在一个风雪交加的夜晚,街上空无一人,一个女孩出现在大街上,只见她走向一条偏僻的小巷,一个身影在哭泣,那个女孩开口询问道:“你怎么了,为什......
10.1万字1个月前
水晶兰之恋 连载中
水晶兰之恋
莯雪儿
魔族公主千雪自出生就被预言有“三世情劫”,所以从小被王兄软禁,于是千雪在自己六百岁生辰宴潜逃。因为不甘心自己的王兄几次三番被六界战神凌煜给打......
8.4万字1个月前
红晕1 连载中
红晕1
水立方18
吸血鬼和女孩
7.1万字1个月前