2. Lawvere, F. W. (1963). Functorial Semantics of Algebraic Theories: And, Some Algebraic Problems in the Context of Functorial Semantics of
Algebraic Theories. Mount Allison University.
3. Adámek, J., Lawvere, F. W., & Rosický, J. (2003). On the duality between varieties and algebraic theories. Algebra universalis, 49(1), 35-49.
4. Adámek, J., Adamek, J., & Rosicky, J. (1994). Locally presentable and accessible categories (Vol. 189). Cambridge University Press.
5. Makkai, M. (1990). A theorem on Barr-exact categories, with an infinitary generalization. Annals of pure and applied logic, 47(3), 225-268.
6. Awodey, S., & Forssell, H. (2013). First-order logical duality. Annals of Pure and Applied Logic, 164(3), 319-348.
7. Makkai, M. (1987). Stone duality for first order logic. Advances in Mathematics, 65(2), 97-170.
8. Awodey, S. (2021). Sheaf Representations and Duality in Logic. Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics, 20, 39.
9. Makkai, M. (1987). Stone duality for first order logic. Advances in Mathematics, 65(2), 97-170.
10. Caramello, O. (2018). Theories, sites, toposes: relating and studying mathematical theories through topos-theoretic'bridges'. Oxford University Press.
11. Johnstone, P. T. (2002). Sketches of an Elephant: A Topos Theory Compendium: Volume 1, 2. Oxford University Press.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。