Qed.
Theorem contra_imp:(P->Q)->(~Q->~P).
Proof.
auto.
Qed.
Theorem vee_distr: ~(P\/Q) <-> (~P/\~Q).
Proof.
unfold iff.
unfold not.
split.
intros. (*left implies right*)
refine (conj _ _);auto.
intros (*right implies left*).
elim H0;apply H.
Qed.
Theorem sum_arrow:((P/\Q)->R)<->(P->(Q->R)).
Proof.
unfold iff.
split.
intros.
apply H.
split; [apply H0 | apply H1].
intros;apply H; apply H0.
Qed.
Theorem ex_mid_doub_neg: ~~(P\/~P).
Proof.
unfold not.
auto.
Qed.
Theorem ex_mid_impl: (P\/~P)->~~P->P.
Proof.
unfold not.
intros.
elim H.
trivial.
intros.
destruct H.
assumption.
elim H0.
exact H.
Qed.
Print bot_to_p. (*查看构造*)
Print ex_mid_impl.
End BHK_interpretable.
下列逻辑式在经典逻辑里是重言式(tautology),但在直觉主义逻辑里却没有构造。
1. ((p → q) → p) → p(Peirce 定律)
2. p∨¬p(排中律)
3. ¬¬p → p(双重否定消除)
4. (¬q → ¬p) → (p → q)(反证法)
5. ¬(p∧q) ↔ (¬p∨¬q)(De Morgan定律)
6. (p → q) → (¬p → q) → q
7. ((p ↔ q) ↔ r) ↔ (p ↔ (q ↔ r))
8. (p → q) ↔ (¬p∨q)(经典逻辑中蕴含的定义)
9. (p∨q → p)∨(p∨q → q)
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。