数学联邦政治世界观
超小超大

(数学)七 (2-2)

以1米为例,从相对的角度来看,其是一个确定的长度,可以找到一个1米长的木棍,但从绝对的角度来看,其实并不知道1米是多少。如:能找出一个长度为1米的木棍(一点不能多、一点不能少)吗?答案是找不到。如果能找到,那就是精度不同,在某一个精度范围内可以找到,但是提高精度,就又发现不符合要求了。同理,随便找出一个木棍,能准确测量出它的长度吗?答案也是做不到。虽然知道有个长度是1米,但是永远无法找到一个精确的1米的实物。反之,虽然知道一个实物肯定有一个长度,但是永远无法精确知道具体是多少,如果要精确表示,只能由确定性部分和不确定部分(误差)来组合表示。

以1和π为例,1是有理数,π是无理数。但从本质来说,1和π是相同的,如果认为1可知,那么π也可知;如果认为1不可知,那么π也就是不可知的。为什么这样说?如果1是一个固定的长度,π本质上也是一个固定长度,在数轴上都是一个点,两者同为数轴上的点并没有本质区别,不存在一个点可知、另一个点不可知的情况。如果在数轴上的一个点可知,那么所有的点均应可知,如果数轴上的点不可知,那么所有的点均应不可知。

所以1和π在本质上都是一样的(都是一个确定的不变值),只是人为的分成了有理数和无理数,然后定义有理数是可知的,无理数是不可知的。总之,一个数不论无穷、无理数还是有理数,从绝对的角度来看都是既存在又不存在,既可知又不可知。从相对的角度来看数,则有理数是可知的,无理数是不可知的,与从绝对的角度来看数,并不冲突。

最后从另一个方面讨论数的相对与绝对。

以1为例,从绝对的角度来看,则一者,无穷也。

1是本质,形是无穷。除了1以外,

2-1也是1, -1+2也是1,3-2也是1,2^0也是1,3^0也是1,lg10也是1,等等,可以有无穷个形式的1,形式可以很简单,也可以很复杂,虽然从本质上它们都是相等的,但不同的形有不同的用途,在解题的过程中,有时需要乘以1,有时需要除以(2-1),有时需要乘以(-1+2),不同的形可以解决不同的问题。

从相对的角度来看,1永远是1,1不可能是0,也不可能是2,0和2是相对于1而言的。虽然1有无穷种形式,0也有无穷种形式,2也有无穷种形式,但0、1、2的本质是不一样的,1解决不了0的问题,也解决不了2的问题。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

柒随七伴 连载中
柒随七伴
白落起
刺客伍六七中的刺客排名第一的首席柒意外穿越到三年后的小鸡岛上,他遇到三年后的伍六七,柒该何去何从呢?
3.3万字1个月前
浩与桐的爱恋之今生今世永生相伴 连载中
浩与桐的爱恋之今生今世永生相伴
三果V
简介正在更新
2.9万字1个月前
斗龙战士七之二代重启 连载中
斗龙战士七之二代重启
小凝凝凝呢
二代回归,重启旅途,拯救伙伴,胜利归来
0.6万字1个月前
名为皇爵至上 连载中
名为皇爵至上
忧郁的豆豆
第二次的穿越,她要面对什么
7.5万字1个月前
朝夕:我的现实,衫衫来迟 连载中
朝夕:我的现实,衫衫来迟
霂羽Serain
«朝夕»:——昏暗的世界里,谁会成为那一把燎原之火?你的未来在你手中,希望会残存吗?梦想会永在吗?一切都在你打开这本书时开始转动。(不是纯乙......
16.6万字1个月前
晨白夜黑:姐姐是我任性了 连载中
晨白夜黑:姐姐是我任性了
初月染
初月染首次执笔古风小说,不喜勿喷——————————————————让本少爷说的话,当我此生欢喜怎么样?哎呀,别觉得自己是慕府天才小小姐了不......
6.0万字1个月前