数学联邦政治世界观
超小超大

数学

1.康托定理‬

对任意集合X 都会存在一个基数比 X 更大的集合。

在X 是无穷集的情况,这揭露了超越无穷的世界。

2.Löwenheim–Skolem 定理

对任意一阶理论,如果其存在无穷模型,则存在任意基数的无穷模型,比如可数模型。

这揭露了那个超越无穷的世界只是一个海市蜃楼——在认知论上,在本体论上,则揭露了超穷世界是多么的超越认知,无法用语言指向,确定真实的不可数集。

3.Henkin 定理

对任意一阶理论,它是一致的当且仅当它存在模型。

Löwenheim–Skolem 定理是在一个超穷理论中,发现了一个一阶理论或许是不可数的自然模型,然后根据这个不可数的模型发现了该理论的可数模型。在这里先有不可数模型,再有可数模型,所以前者仍被认为是自然的,而后者属于生造的或限制的。

但 Henkin 定理并不需要额外假设模型存在,而是仅凭理论本身来构造一个完全切合理论的模型,这都不需要在一个超穷理论中证明,这样的模型甚至都可以在某种理想的计算机中被模拟出来(如利用理想的闭合时曲线作计算的理想计算机),可数模型就此夺回了它的自然感。

换言之,在本体论上超穷世界很可能并不存在,我们认知的超穷集合仅仅只是概念上的存在,在一个可数结构中形成的概念,而非真实的存在。亦或者反向思考,说明超穷世界在本体论上的超验深度越发深邃。

1.一阶理论:像 ZFC 这样的集合论都是一阶理论。

2.无穷模型:通俗的说,就像物理宇宙是物理理论的模型,集合论模型也被称作集宇宙。这个宇宙如果至少含有无穷个对象,则称其为无穷模型。

3.可数模型:仅含有可数个对象的宇宙,可数个是指≤ℵ₀个。

2.超穷理论:可以证明存在不可数集的足够使用的理论,下限如 KP+∃ℵ₁

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

四叶草之国 连载中
四叶草之国
知楠楠
承接上一部四叶草五传的剧情,这次的剧情是四叶草五传前往四叶草之国找到了黑暗势力的来源并将其打败的故事
5.0万字1个月前
惊悚游戏,亦正亦邪双生子 连载中
惊悚游戏,亦正亦邪双生子
鸘s
0.4万字1个月前
攻略神明后我成神了 连载中
攻略神明后我成神了
朝雨惜晨
【万人迷妹宝训狗文学】沈溆安被系统带到了西幻魔法世界,只有取得神明的爱才能回到现实世界。却在新手抽奖中抽出了SSR技能【神力转移】,只要和神......
2.8万字1个月前
浩与桐的爱恋之今生今世永生相伴 连载中
浩与桐的爱恋之今生今世永生相伴
三果V
简介正在更新
2.9万字4周前
快穿:小姐姐她貌美如画 连载中
快穿:小姐姐她貌美如画
小欧尼尼
万千世界为你而来。万人迷貌美心机女主全文只有一个宫阿轻1V1有些配角单箭头女主阿轻请求你不要被美死(已完结)缺爱大小姐✘快穿者互宠超甜在你面......
3.9万字4周前
执潜 连载中
执潜
是星魂小作家呀
执潜专列,孤勇把潜行当兄弟,潜行把他妹妹(执法)娶了
0.2万字4周前