以上操作意图说明:我们用元序列中的符号指代集合,最终目的是为了用一个符号指代几个符号才能呈现的基数信息。譬如我们用元序列中的符号“牛”指代特定集合{马,鸡,狗,牛},目的就是为了用“牛”这1个符号指代这个集合中的4个符号才能表示的基数信息,达到基数信息表达的高效性、经济性。
根据操作意图说明可见,呈现、统计集合中的元素总数才是我们的最后目的,所以为了表达方便,下文中我们可以把以上集合中的“实物”元素按一一对应法则换成等量的字符元素“|”,然后把元序列〈○,马,鸡,狗,牛〉中的每个序数符号系统可以指代的唯一基数集合及其基数重新表述为:序号“马”可指代基数集合{马}及其基数“|”;序号“鸡”可指代基数集合{马,鸡}及其基数“||”;序号“狗”可指代集合{马,鸡,狗}及其基数“|||”;序号“牛”可表征基数集合{马,鸡,狗,牛}及其基数“||||”,然后再进一步表示为数学式:马=|;鸡=||;狗=|||;牛=||||。
符号“○”是这个自然物序列的起点号,是人的视觉观察点位置所在,是序列中各符号位置的共同的参照点,所以“○”自己不指代任何序数或基数,它是它自身。
2.1.6、加、乘关系式表是通过元序列符号指代的基数建构的
找到了元序列中每个序号所指代的唯一基数后,我们并可以对这些符号作两两关系的“加法关系式”的建构。这里的“加法关系式”即我们熟悉的小学加法口诀表中的加法演绎式,十进制数的加法口诀表即0~9十个数两两之间的加法关系式表。
加法关系式表(部分)
○+马=马(|);……
马+马=鸡(||);马+鸡=狗(|||);
马+牛=马○(|||||);鸡+鸡=牛(||||)
鸡+狗=马○(|||||);
狗+牛=马鸡(|||||||);……。
部分关系式的来源解释:按本文给出的符号组合原理(详见第三章节),“马○”这个组合位于这个五进制数序列中的第“|,|,|,|,|”个(指最右的那个“|”),所以“马○”可指代基数“|||||”,这个基数恰好是“马”的基数“|”和“牛”的基数“||||”的累加之和,也是“鸡”和“狗”的基数之和,所以马+牛=马○=鸡+狗。
加法关系式表建构完毕后,我们再根据“m ×n”表示“n个m累加”的乘法理念,通过累加法,结合此数序列,一次性地建构出元序列所有符号两两之间的乘法关系式表(即乘法口诀表)。
(操作提示:为了表达的简略,下文中若基数“|”达到10个以上,就用(||…|)形式以及下角标数字作出标记。譬如“(||…|₈₅)”,意思是括弧内有85个“|”。)
乘法关系式表(部分)
……,鸡×鸡=牛;鸡×狗=马马;鸡×牛=马狗(||||||||₈);狗×狗=马牛(|||||||||₉);狗×牛=鸡鸡(||…|₁₂);牛×牛=狗马(||…|₁₆)。
加、乘关系式全部构造完毕后,我们就可以用这套五进制的数体系记数或者做算术运算(减、除是加、乘的逆运算,不需要建构关系式表)。此五进制数与十进制数是同等完备的,运用这套五进制数作除法演绎,可得除法演绎式“马狗牛·马÷狗鸡=鸡·狗”[9] ,此式与十进制数的除法演绎式“44.2÷17=2.6”等价
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。