从这个讨论看起来,似乎有可能在这两种相互矛盾的观点中选择一种,因为这两个观察者对于同一个现象的解释是不同的。假使刚才所指出的两种解释都没有什么不合理的地方,那么我们前面的全部论证都会受到破坏,我们就不能用两个并立的方法,一种用引力场,另一种不用引力场,来描写一切现象。
但是幸而里面的观察者的推理中有一个严重的错误,才挽救了我们前面的结论。他说:“光束是没有质量的,因此不会受到引力场的影响。”这是不正确的!光束具有能,而能具有惯性质量,但是任何惯性质量都受引力场的吸引,因为惯性质量和重力质量是相等的。一束光在引力场中会弯曲,正如以等于光速的速度水平地抛出的物体的路线会弯曲一样。假如里面的观察者作出正确的推理,他把光线在引力场中受弯曲的事实考虑进去,那么他的结果会与外面的观察者的结果完全一致。
地球的引力场对于使光线弯曲的力自然是太弱了,不能用实验直接证明光线在地球引力场中的弯曲。但是在日蚀时所完成的著名实验,则间接而确实地证明了引力场对光线方向的影响。
从这些例子中可以看出,要建立一种相对论物理学是很有希望的。但是要这样做,我们必须首先对付引力问题。
在升降机的例子中我们已经看到两种描述的并立性。可以假定非匀速运动,也可以不假定。我们可以用引力场来从这些例子中排斥“绝对的”运动。但是那样一来,非匀速运动就一点也不绝对了。引力场是完全能够把它排斥掉的。
我们可以把绝对运动和惯性坐标系的鬼魂从物理学中赶出去,从而建立一个新的相对论物理学。我们的理想实验指出了广义相对论的问题怎样和引力问题有密切的关系,并且指出了为什么引力质量和惯性质量的相等对这一关系会是这样重要。很明显,广义相对论中引力问题的解和牛顿的解一定是不同的。引力定律,正像所有的自然定律一样,必须对所有可能的坐标系都能成立,而牛顿提出的经典力学定律则只有在惯性坐标系中才是有效的。P164
下面一个例子比下落的升降机例子还要奇特。我们必须接触到一个新的问题,即广义相对论与几何学之间的关系。我们先来描写一个另外的世界,在那里面生存着二维的生物,而不是像我们的世界里那样生存着三维的生物。电影已经使我们习惯于感受表演于二维银幕上的二维生物。我们现在设想银幕上的这些影子(出场人物)是实际存在的,他们有思维的能力,他们能创造他们自己的科学,二维的银幕就是他们的几何空间。这些生物不能具体地想象一个三维空间,正如我们不能想象一个四维世界一样。他们能够折转一根直线,知道圆是什么,但是不能做一个球,因为这就等于丢弃了他们的二维银幕。我们的处境也相类似,我们能够把线和面折转和弯曲过来,但是我们很难想象一个转折或弯曲的三维空间。
这些“影子”通过生活、思维和实验,最后可以精通二维欧几里得几何学的知识。于是他们能证明三角形的内角之和为180度。他们能够作出有公共圆心的一大一小的两个圆。他们会发现,两个这样的圆的圆周之比等于它们的半径之比,这种结果正是欧几里得几何学的特征。如果银幕无限大,这些“影子”会发现,若笔直往前旅行,他们永远也不会回到起点。
现在我们想象这些二维生物的环境改变了。我们再想象有人从外面,即从“第三维”,把他们从银幕上迁移到具有很大半径的圆球上。假如这些影子比起全部球面来是极小的,假如他们无法作遥远的通信,又不能走动得很远,则他们不会感觉到有什么变化。小三角形的内角之和仍是180度。具有共同圆心的两个小圆,其半径之比仍等于其周长之比。他们沿着直线旅行,还是不会回到他们的起点。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。