数学联邦政治世界观
超小超大

直觉与潜意识(一) (6-2)

That not every one can invent is nowise mysterious. That not every one can retain a demonstration once learned may also pass. But that not every one can understand mathematical reasoning when explained appears very surprising when we think of it. And yet those who can follow this reasoning only with difficulty are in the majority; that is undeniable, and will surely not be gainsaid by the experience of secondary-school teachers.

不是每个人都能进行创造性的工作,这是很正常的。此外,也不是每个人都能记住学习过的例子。与之不同且令人惊讶的是,并不是每个人都能理解数学推导的过程,(从逻辑上看这是很奇怪的,见下文)。事实上,大多数人都很难跟上推导的节奏,这是不可否认的,当然,一个有经验的中学老师肯定也会同意这点。

And further: how is error possible in mathematics? A sane mind should not be guilty of a logical fallacy, and yet there are very fine minds who do not trip in brief reasoning such as occurs in the ordinary doings of life, and who are incapable of following or repeating without error the mathematical demonstrations which are longer, but which after all are only an accumulation of brief reasonings wholly analogous to those they make so easily. Need we add that mathematicians themselves are not infallible?...

让我们更进一步:在学习数学或研究数学时,为什么会出错?理智的头脑不应该犯逻辑谬误,有好头脑的人也不会被困在简短的推导中,因为对他们来说这就像处理日常事务一样简单,然而这些人却不能无误地跟上数学推导和演算的节奏,但这些数学演示毕竟只是简单推理的累积,完全类似于他们能够轻易得出的结论。难道说数学家们也做不到这点吗?

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

恋爱与轮回 连载中
恋爱与轮回
太牛无法比
“无论轮回多少次,我们都离不开彼此,因为我们是命中注定的。”
2.9万字12个月前
教你写文 连载中
教你写文
小本木子
最基础最老本的一个教程,可以进一下主页QQ群:726748579
1.2万字12个月前
非案铺 连载中
非案铺
花吱呀
在七湘有间店铺,专门接受不一般的委托,花颜便是这店铺的老板,花颜每天都会接受到各种案子,让许奕澜和何嘉朗跟她去破案,没想到有一天会遇到自己的......
3.2万字12个月前
诗词小故事 连载中
诗词小故事
流年似水_475831530333888
0.1万字12个月前
有病的他 连载中
有病的他
珑玲妹妹
不正常
0.1万字12个月前
快穿:棘手动人白玫瑰 连载中
快穿:棘手动人白玫瑰
嘎嘎一只
【一单元已完结】白娇娇成年后,在渎神星艰难求生的她得到了真神(bushi)怜惜,得到众人羡艳的sss级美人滤镜(也bushi)只是没想到,这......
4.5万字12个月前