数学联邦政治世界观
超小超大

Haskell和自然之代数篇 (5-1)

在上一篇文章 parker liu:Haskell和自然数之基础篇中,我们定义了什么是自然数,给出了自然数的几种定义形式。在这篇文章中,我们继续来探讨自然数,看看自然数的代数结构,自然数和递归、幺半群、F-代数、自由幺半群的关系。

我们再来看一下自然数的定义:

data N = O

| S N -- 使用了递归定义

deriving (Show)

我们可以看到,在这个定义里使用了递归的方式来定义自然数,其中S N是递归步,O是递归的终止。自然数具有一个递归形式,递归层数就是该自然数的大小。于是我们就有了自然数类型N 的形式定义。

我们可以写这么一个函数来将上面定义的自然数N 转换为我们常见的正整数。

nToInt :: N -> Int

nToInt O = 0

nToInt (S n) = 1 + nToInt n

--- 在ghci中的运行结果如下

> nToInt (S (S (S O))

3

也可以写这么一个函数,将上面定义的自然数N 转换为字母a 组成的字符串。

nToCharAs :: N -> [Char]

nToCharAs O = []

nToCharAs (S n) = 'A' : nToCharAs n

--- 在ghci中的运行结果如下

> nToCharAs (S (S (S O))

"AAA"

可以看到这两个函数的实现非常的相似,有着同样的结构。如果我们对自然数的定义稍作修改,将自然数N 的构造子S 变换为Cons (),上面的函数的实现就有着更直观的对应。我们来看修改后的自然数定义:

data NList = NNil

| NCons () NList -- 使用了递归定义

deriving (Show)

我们可以看到,NList 实际上就是类型为()的列表。我们用这个新的自然数定义重新实现上面两个转换函数,于是有:

nlToInt :: NList -> Int

nlToInt NNil = 0

--^ NNil

nlToInt (NCons () nl) = 1 + (nlToInt nl)

--^ () NCons NList

--- 在ghci中的运行结果如下

> nlToInt (NCons () (NCons () (NCons () NNil))

3

nlToCharAs :: NList -> [Char]

nlToCharAs NNil = []

--^ NNil

nlToCharAs (NCons () nl) = 'A' : (nlToCharAs nl)

--^ () NCons NList

--- 在ghci中的运行结果如下

> nlToCharAs (NCons () (NCons () (NCons () NNil))

"AAA"

在上面的两个新的转换函数中,NNil 和NCons、() ,以及递归的NList有了直接的一一对应。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

蓝天画的冷漠 连载中
蓝天画的冷漠
浅心夏
[情之所绊,心之所想,浅夏之歌,唯爱再受]她蓝天画(莫灵画)三年再次见面,却变得冷漠无情,他东方末三年再次见面,他爱上了别人,他洛小熠三年之......
3.1万字8个月前
刹那——我还是找到了你 连载中
刹那——我还是找到了你
刹那乂
“如果我的死,能换到重头再来……”“好久不见”“嗯,好久不见”本书为个人oc世界!原创!禁止抄袭角色及内容!oc们的立绘还在画呜呜,后面会统......
0.4万字8个月前
逃之妖妖,灼灼其华 连载中
逃之妖妖,灼灼其华
小草出山
主要讲述凤凰转世的白墨未救自己前世的爱人弥皇一路上遇神:(怦然心动)遇妖王:(被妖王套路)遇魔尊:(掉入温柔陷阱)遇蛇王:(一起生一窝蛇崽子......
47.0万字8个月前
奥特之父和奥特之母的恋爱 连载中
奥特之父和奥特之母的恋爱
巧丝家的美丽的蚊子小天使公主孙胜男小星星
你别过来,你别过来。dy——奥特之母你的安粉点,今天晚上是我们的床上晚宴。dy——奥特之父不要过来,不要过来。dy——奥特之母嘿嘿嘿!dy—......
0.5万字8个月前
星期八摘录 连载中
星期八摘录
NaOH祈
0.5万字8个月前
双生……镜灭 连载中
双生……镜灭
哪个崽踩我裙子
魔神转世墨思瑞与镜城创世神安黎笙的坎坷之恋(有第二季)
4.7万字8个月前