但是唯名论者仍然可以认为超过的部分与上帝、entelechies等一样是形而上学的东西,是无意义的。
值得一提的是,虽然卡尔纳普本人并没有对潜无穷与实无穷展开过多的阐述,不过这种对于潜无穷思路的援用使他成为了目前唯名论与科学实践的调和者的an undeniable precursor 。Carnap’s basic idea has been developed extensively, by Chihara (1990) and Hellman (1989) in particular; for an excellent survey of this work, see Burgess and Rosen (1996).
3.3 是否存在与FN计划相容的无穷
卡尔纳普构想了第三个策略用来恢复无穷,但是保证对无穷个数的个体的假设不是纯逻辑的,用来消除唯名论着的疑虑。他建议使用物理对象的序列,而不是对象本身,来构建一个假的无限,从而避免达到 "final number",这样就避免了“存在无穷多物理事物”这种可疑假设。
卡尔纳普为他的finitistic syntax的构筑给出了五个论题:
(S1) Individual symbols in the object language are concrete things, i.e. tokens; (it is possible that) there are finitely many of them.
(S2) Formulae (and proofs) of the object language are (‘non-spatial’) sequences of object language symbols. Some formulae are physically instantiated, others are not.
(S3) Formulae that are not physically actualized in object languages ymbols can be referred to metalinguistically, using sequences of names of the object language symbols.
(S4) Formulae that are not and could never be physically actualized can nonetheless be referred to via abbreviations.
(S5) Such a syntax may suffice to ‘build an unrestricted arithmetic.’
从卡尔纳普的这种有穷主义论题中,我们不难推断,由上述原则构筑的语言包含了现实世界中没有具体实现的东西,甚至在一些可能世界中也允许一些不可能被现实化的东西(比如某个世界现实的笔墨资源很少,无法记述长度过长的句子)。我们可以从中明显看到这种思路与“Steps Toward a Constructive Nominalism” 与再后来Word and Object中的奎因的差异,这种差异也体现在对分析性的态度以及方方面面。(卡尔纳普将语言当作一个数学课题,而奎因将其看作自然课题。)
不过我们也可以就卡尔纳普论题给出一些反对意见:
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。