102. The same conceptual couple is illustrated in geometry by the connections between ‘topological surface properties and their local differential properties’, that is, between the curvature of the former and the determination of second derivatives of the latter, both in the ‘metric formulation’ of geoemtry in the work of Hopf (Lautman,Essai sur l’unité, pp. 40–3) and ‘in its topological formulation’ in Weyl and Cartan’s theory of closed groups (pp. 43–4).
103. See Barot, ‘L’objectivité mathématique selon Albert Lautman’, p. 10; Chevalley, ‘Albert Lautman et le souci logique’, pp. 63–4.
104. Lautman,Essai sur l’unité, p. 209.
105. For an account of the role that this example of the local–global conceptual couple plays in Deleuze see Simon Duffy, ‘The Mathematics of Deleuze’s Differential Logic and Metaphysics’, in Duffy (ed.),Virtual Mathematics: The Logic of Difference.
106. Lautman,Essai sur l’unité, p. 288.
107. Lautman,Essai sur l’unité, p. 209.
108. Lautman,Essai sur l’unité, p. 288.
109. Loi in Lautman,Essai sur l’unité, p. 12.
110. Petitot, ‘La dialectique de la vérité’, p. 99.
111. Lautman,Essai sur l’unité, p. 22.
112. Petitot, ‘La dialectique de la vérité’, p. 113.
113. Petitot, ‘La dialectique de la vérité’, p. 80.
114. Petitot, ‘La dialectique de la vérité’, p. 113. See also Barot, ‘L’objectivité mathématique selon Albert Lautman’, pp. 6, 16 n. 1.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。