16 Deleuze follows and interprets freely two main secondary sources: É mile Br é hier ’s concise but illuminating Lathé orie des incorporels dans l’ancien sto ï cisme (Paris: Vrin, 1997 [ 1928 ]), and Victor Goldschmidt ’s more substantial Le syst è me sto ï cien et l’idé e de temps (Paris: Vrin, 1998 [ 1953 ]). On the question of time, which Br é hier discusses briely in his final chapter, and which is the focus of Goldschmidt’s mono-graph, it is important to note that Deleuze selects freely between vari-ous Stoic positions, and seems to privilege Plutarch’s over Chrysippus’ (at least as presented by Arius). See Br é hier, La théorie des incorporels , p. 58.
17 Plato, Sophist , 247e.
18 Sextus Empiricus, Adversus Mathematicos , trans. R. G. Bury (Cambridge, MA: Harvard University Press, 1997 ), viii , 263.
19 Plato, Parmenides , 130d.
20 See Albert Lautman, Essai sur les notions de structure et d’existence en math é matiques (Paris: Hermann, 1938 ), vol. ii , pp. 148–49.
21 My emphasis. See also Br é hier, La th é orie des incorporels , pp. 57–59.
22 Deleuze follows Goldschmidt’s analysis in Le syst è me sto ï cien , pp. 36–40.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。