定义 四元Veblen函数
φ:=Φ Tri. φ
φ : Ord → Ord → Ord → Ord → Ord
φ = Φ Tri.φ
例 第一个参数从无效到刚开始生效, 由定义, 有以下等式成立.
φ₀=Tri. φ
φ₁,₀,₀=fixpt λα,Tri. φα,₀ 0
φ-0 : φ 0 ≡ Tri.φ
φ-0 = refl
φ-1-0-0 : φ 1 0 0 ≡ fixpt (λ α → Tri.φ α 0 0)
φ-1-0-0 = refl
定理 中间两个参数为零, 讨论第一个参数为后继和极限的情况, 由定义, 有以下等式成立.
φα⁺,₀,₀=fixpt λβ,φα,ᵦ,₀ 0
φₗᵢₘ f,₀,₀=jump λβ,lim λn,φ f ₙ,ᵦ,₀ 0
φ-suc-0-0 : φ (suc α) 0 0 ≡ fixpt λ β → φ α β 0 0
φ-suc-0-0 = refl
φ-lim-0-0 : φ (lim f) 0 0 ≡ jump λ β → lim λ n → φ (f n) β 0 0
φ-lim-0-0 = refl
定理 将 φα 看作一个固定的函数, 类似地, 有以下等式成立.
φα,ᵦ⁺,₀=fixpt λᵧ,φα,ᵦ,ᵧ 0
φα,ₗᵢₘ g,₀=jump λᵧ,lim λn,φα,g ₙ,ᵧ 0
φ-α-suc-0 : φ α (suc β) 0 ≡ fixpt λ γ → φ α β γ 0
φ-α-suc-0 {α = zero} = refl
φ-α-suc-0 {α = suc _} = refl
φ-α-suc-0 {α = lim f} = refl
φ-α-lim-0 : φ α (lim g) 0 ≡ jump λ γ → lim λ n → φ α (g n) γ 0
φ-α-lim-0 {α = zero} = refl
φ-α-lim-0 {α = suc _} = refl
φ-α-lim-0 {α = lim f} = refl
定理 将 φα,ᵦ 看作一个固定的函数, 类似地, 有以下等式成立.
φα,ᵦ,ᵧ⁺=fixpt φα,ᵦ,ᵧ
φα,ᵦ,ₗᵢₘ ₕ=jump λδ,lim λn,φα,ᵦ,ₕ ₙ δ
φ-α-β-suc : φ α β (suc γ) ≡ fixpt (φ α β γ)
φ-α-β-suc {α = zero} {β = zero} = refl
φ-α-β-suc {α = zero} {β = suc _} = refl
φ-α-β-suc {α = zero} {β = lim _} = refl
φ-α-β-suc {α = suc _} {β = zero} = refl
φ-α-β-suc {α = suc _} {β = suc _} = refl
φ-α-β-suc {α = suc _} {β = lim _} = refl
φ-α-β-suc {α = lim _} {β = zero} = refl
φ-α-β-suc {α = lim _} {β = suc _} = refl
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。