柏拉图认为,理念是客观实在的,而分有同名理念的具体事物虽然存在但不实在。因此,怎样使灵魂脱离变化的可见世界而进入可知的实在世界,成为他研究的重要课题之一。柏拉图正是在寻找知识的过渡形态中发现,数学不仅具有实用意义,它是“一切技术的、思想的和科学的知识都要用到的,它是大家都必须学习的最重要的东西之一”(〔1〕,522C),而且具有重要的理论意义,它是“把灵魂拖着离开变化世界进入实在世界的学问”(〔1〕,521D),即由可见世界进入可知世界的阶梯。为了说明数学的居间性,他从数学在认识论中的地位和存在不同等级的三种数来进行论证。
数学在柏拉图认识论中的居间地位
柏拉图在其认识的四阶段论中把数学定位于“比意见明确一些,但比知识要暧昧一些”的理智阶段(〔5〕,205)。他在“线喻”中阐明了这一思想。
认识的四个阶段——“线喻”
柏拉图在《国家篇》中根据知识的实在性和真实性的程度,通过“线喻”把知识分为四个等级。首先他把世界分为可见世界和可知世界两部分,然后在这两部分中按认识对象的不同再把可见世界分为:实物影象和实物本身;把可知世界划分为:以实物作影象和理念。这样,对应于不同的认识对象,就有四种不同的灵魂状态:想象、信念、理智、理性,而从可见世界获得的只能是一种意见,只有从可知世界才能获得真实的知识。其中:
第1等级:以实物的影象为对象,它所对应的心理状态是想象。
第2等级:以实际的东西(也就是我们周围的生物以及一切自然物和人造物)为对象,它所对应的心理状态是信念。
第3等级:以实物作为影象的对象,是数学的研究对象,它是向第4等级过渡的中间阶段,它所对应的心理状态是理智。
第4等级:以理念为对象,无论从实在性或真理性来说,都是最高等级的,是纯哲学研究的范围。它所对应的心理状态是理念。
由此可见,柏拉图通过“线喻”不仅展现出认识的四个阶段(想象、信念、理智、理性),而且把数学的对象和知识确定为过渡性的中间阶段。
数学处于理智认识阶段
柏拉图认为,数学虽然属于可知世界,但它在研究的对象、方法、目的以及真实性等方面又不同于理性,所以它是处于从意见过渡到知识的理智阶段。
在研究对象上。柏拉图认为,数学家研究的是各种图形,他把实际事物作为影象,这些“图形乃是实际的东西”,它们属于感性的事物;他们所研究的虽然不是所画的这些特殊的图形,而是图形本身,但他们所要看到的是,只有用思想才能认识到的理念。他说:“显然,他们利用各种可见的图形,谈到这些图形,但他们所思考的实际上并不是这些图形,而是这些图形所摹仿的那些东西。他们所研究的并不是他们所画的这个特殊的正方形和这个特殊的对角线等等,而是正方形本身,对角线本身等等。他们所作的图形乃是实际的东西,有其水中的影子和影象。但是他们现在又把这些东西当作影象,而他们实际要求看到的则是只有用思想才能认识到的那些理念”(〔5〕,200页)。理性的研究对象是理念,它不引用感性事物,而只引用理念。他说:“人的理性决不引用任何感性事物,而只引用理念,从一个理念到另一个理念,并且归结到理念”(〔5〕,201页)。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。