然而随着数理逻辑对推理过程本质研究的渐渐被认识,反对制造定理证明机的人们在日益减少,而支持的人却越来越多。本世纪50年代,塔尔斯基首先从理论上证明了∶在初等几何以及初等代数的定理证明是可以机械化的。不过他给出的机械化方法过于繁复,在实践中真正实现起来是相当困难的。正是因为这样,所以他的结果给人以这样一个感觉∶定理证明能机械化的设想是个例外,因为大部分初等几何及初等代数以外的结果都是不能机械化的。另外,塔尔斯基还提出了制造证明机的设想。无疑这种理论上的阐明是重要的,就如图灵从理论上证明电子数字计算机是可能的一样,它让人觉得自己的实践和试验不是盲目的。
科技的进步为人们的这些设想提供着物质基础,终于人们制造出了证明定理的机器。
五十年代中期,美国开始利用计算机进行证明数学定理的尝试。
1959年,王浩用计算机证明了罗素和怀特海所著的《数学原理》这一经典著作中的300 多条定理,一共只用了9分钟的机器时间。这件事在数学界(特别是数理逻辑界)引起了轰动。他所使用的方法就是罗素和怀特海的技术,因为在《数学原理》中有许多标准的技巧是可以很快地变为机械的手续。接着J.A.Robinson发展了并使之成为一种标准的方法。这个结果就导致许多人对定理机器证明的前途看好,甚至有人还在1958年做出预测说,在10年之内计算机将发现并证明一个重要的数学新定理。也有人设想,前人像皮亚诺、怀特海、罗素、希尔伯特以及图灵等的梦想都将实现,然而事情的进展并没有人们预想的那样顺利,不过随着时间的推移,这些设想终究成为了现实。
首先是20世纪70年代,美国的数学家阿佩尔和黑肯借助于计算机证明了著名的四色猜想,震动了数学界。它标志着计算机证明数学定理有着很好的前景。尽管如王浩先生的说法,四色猜想的证明是一种使用计算机的特例机证,但是它是一个由人没有能够解决的数学问题。而且它的证明又非传统上的形式,于是就引起了人们继数学基础研究、希尔伯特探讨数学证明之后的又一次对数学证明的思考:什么是数学证明?
而上世纪70年代,在国际上掀起的一股研究以"非"字当头的科学中,由曼德布罗特创立的分形几何学,更是得力于计算机的强大功能。计算机在这里并不是证明定理,而是帮助人们提出猜想,引发思考。我们当如何看待这门学科呢?有人认为它不是数学。但也有更多的人认为它是一门数学学科,特别是物理学家,因为分形几何正在成为研究大自然中许多复杂现象的有力工具。双方争执的焦点是"什么是数学"这个基本的数学哲学问题。
四色猜想证明的历史
1976年1月,困扰了无数智者100多年的四色猜想由人机合作终于获得了解决。面对这一事实,有人带着些惊喜、有人带着些遗憾、也有人带着些怀疑,毕竟它不是数学家们所希望的那种传统演绎证明定理的方式。
四色问题
四色问题是一个属于拓扑学的问题,它的粗略描述可以追溯到1840 年。当时数学家莫比乌斯在给学生的讲课中提到。在平面上很容易指出四个区域,其中每两个区域都有一个公共的边界线,并要求学生证明:在平面上决不可能指出五个区域都具有上述性质。从这个论断的证明中,可得出莫比乌斯假设∶平面或球面上的每张地图都可以用四种颜色来着色。
明确提出四色问题的是伦敦大学学院毕业不久的学生弗朗塞斯·古斯里(1852)。他在一封给他兄弟弗雷赘克的信中说∶
看来,每幅地图都可以只用四种颜色着色,使得有共同边界的国家着上不同的颜色。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。