数学联邦政治世界观
超小超大

四象猜想 (5-2)

然而随着数理逻辑对推理过程本质研究的渐渐被认识,反对制造定理证明机的人们在日益减少,而支持的人却越来越多。本世纪50年代,塔尔斯基首先从理论上证明了∶在初等几何以及初等代数的定理证明是可以机械化的。不过他给出的机械化方法过于繁复,在实践中真正实现起来是相当困难的。正是因为这样,所以他的结果给人以这样一个感觉∶定理证明能机械化的设想是个例外,因为大部分初等几何及初等代数以外的结果都是不能机械化的。另外,塔尔斯基还提出了制造证明机的设想。无疑这种理论上的阐明是重要的,就如图灵从理论上证明电子数字计算机是可能的一样,它让人觉得自己的实践和试验不是盲目的。

科技的进步为人们的这些设想提供着物质基础,终于人们制造出了证明定理的机器。

五十年代中期,美国开始利用计算机进行证明数学定理的尝试。

1959年,王浩用计算机证明了罗素和怀特海所著的《数学原理》这一经典著作中的300 多条定理,一共只用了9分钟的机器时间。这件事在数学界(特别是数理逻辑界)引起了轰动。他所使用的方法就是罗素和怀特海的技术,因为在《数学原理》中有许多标准的技巧是可以很快地变为机械的手续。接着J.A.Robinson发展了并使之成为一种标准的方法。这个结果就导致许多人对定理机器证明的前途看好,甚至有人还在1958年做出预测说,在10年之内计算机将发现并证明一个重要的数学新定理。也有人设想,前人像皮亚诺、怀特海、罗素、希尔伯特以及图灵等的梦想都将实现,然而事情的进展并没有人们预想的那样顺利,不过随着时间的推移,这些设想终究成为了现实。

首先是20世纪70年代,美国的数学家阿佩尔和黑肯借助于计算机证明了著名的四色猜想,震动了数学界。它标志着计算机证明数学定理有着很好的前景。尽管如王浩先生的说法,四色猜想的证明是一种使用计算机的特例机证,但是它是一个由人没有能够解决的数学问题。而且它的证明又非传统上的形式,于是就引起了人们继数学基础研究、希尔伯特探讨数学证明之后的又一次对数学证明的思考:什么是数学证明?

而上世纪70年代,在国际上掀起的一股研究以"非"字当头的科学中,由曼德布罗特创立的分形几何学,更是得力于计算机的强大功能。计算机在这里并不是证明定理,而是帮助人们提出猜想,引发思考。我们当如何看待这门学科呢?有人认为它不是数学。但也有更多的人认为它是一门数学学科,特别是物理学家,因为分形几何正在成为研究大自然中许多复杂现象的有力工具。双方争执的焦点是"什么是数学"这个基本的数学哲学问题。

四色猜想证明的历史‍‍‍‍‍

1976年1月,困扰了无数智者100多年的四色猜想由人机合作终于获得了解决。面对这一事实,有人带着些惊喜、有人带着些遗憾、也有人带着些怀疑,毕竟它不是数学家们所希望的那种传统演绎证明定理的方式。

四色问题‍

四色问题是一个属于拓扑学的问题,它的粗略描述可以追溯到1840 年。当时数学家莫比乌斯在给学生的讲课中提到。在平面上很容易指出四个区域,其中每两个区域都有一个公共的边界线,并要求学生证明:在平面上决不可能指出五个区域都具有上述性质。从这个论断的证明中,可得出莫比乌斯假设∶平面或球面上的每张地图都可以用四种颜色来着色。

明确提出四色问题的是伦敦大学学院毕业不久的学生弗朗塞斯·古斯里(1852)。他在一封给他兄弟弗雷赘克的信中说∶

看来,每幅地图都可以只用四种颜色着色,使得有共同边界的国家着上不同的颜色。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

S级Omega所托非人? 连载中
S级Omega所托非人?
是废话不是费话
作者也不知道要写什么简介的文
9.0万字4周前
万界超神之永恒帝天 连载中
万界超神之永恒帝天
造物之始
永恒信念,正义随它行,善良因即存,所谓善恶虚无,守护有些必定规律,愿世界更好,众神听令归位!
5.3万字4周前
神界直播间戴莹 连载中
神界直播间戴莹
诗月桐
0.6万字4周前
反派大佬怀了我的崽 连载中
反派大佬怀了我的崽
江上不知行
gb男生子,穿书沙雕向
1.4万字4周前
蔷薇少女水银灯之爱的冒险 连载中
蔷薇少女水银灯之爱的冒险
半岛咖啡馆
12.8万字4周前
快穿之暗黑童话祭 连载中
快穿之暗黑童话祭
呐个谁
简介正在更新
7.5万字4周前