泛函分析《L^ᵖ空间定义》
今天就介绍一下Lᵖ空间首先,我们利用 L¹(Ω) 表示值域为 ℝ 的 Ω 上的可积函数空间,定义范数(范数需满足正定性、齐次性以及三角不等式): ‖f‖ʟ¹=∫Ω |f(x)|dx
一、重要的积分定理
1. 单调收敛定理:设 {fₙ} 是 ʟ¹ 中序列, ∀n,fₙ ≤ fₙ₊₁ α,e. 有 sup ∫ fₙ<∞ ,
ₙ
那么 fₙ(x) 在 Ω 上几乎处处收敛,记为 f(x) ,有 f∈L¹ 且 ‖fₙ–f‖ʟ¹ → 0 。
2. Lebesgue控制收敛定理:设 {fₙ} 是 ʟ¹ 中函数序列,假设 fₙ(x) → f(x) α,e 收敛于 Ω 中,且存在函数 g∈L¹ 使得对每个 n , |fₙ(x)| ≤ g(x) α,e. 于 Ω 中,则 f∈L¹ 且 ‖fₙ–f‖ʟ¹ → 0.
3. Fatou引理:设 {fₙ} 是 ʟ¹ 中函数序列使得对每个 n , fₙ(x) ≥ 0 α,e. in Ω,以及满足
sup ∫ fₙ<∞ . 对于每个 x∈Ω ,
ₙ
令 f(x)=lim inf fₙ(x) ,则 f∈L¹(Ω) 且 ∫ f ≤ lim inf ∫ fₙ. n→∞
4. 记号: Cᴄ={f∈C(Ω),f(x)=0∀x∈Ω – K,K ⊂ Ω }表示 Ω 中具有紧支集的连续函数空间。
5. 稠密性定理:空间 Cᴄ(Ω) 在 ʟ¹ 中稠密,即有 ∀f∈L¹(Ω) 以及 ∀ε>0 , ∃f₁∈Cᴄ(Ω) 使得 ‖f – f₁‖<ε .
6. Tonelli:设 Ω₁,⊂ ℝᴺ¹,Ω₂ ⊂ ℝᴺ² 为开集, F:Ω₁ × Ω₂ → ℝ 为可测函数。假设对几乎处处 x∈Ω₁,∫Ω₂ |F(x,y)|dy<∞ 以及 ∫Ω₁ dx ∫Ω₂ |F(x,y)|dy<∞,那么 F∈L¹(Ω₁ × Ω₂) .
7. Fubini:假设 F∈L¹(Ω₁ × Ω₂),那么对几乎处处 x∈Ω₁,F(x,y) ∈ L¹y(Ω₂) 且有 ∫Ω₂ F(x,y) dy∈L¹ₓ(Ω₁),同样,对于几乎处处 x∈Ω₂,F(x,y) ∈ L¹ₓ(Ω₁) 且有 ∫Ω₁ F(x,y)dx ∈ L¹y(Ω₂),并且有
∫Ω₁ dx ∫Ω₂ F(x,y)dy=∫Ω₂ dy ∫Ω₁ F(x,y)dx=∫ ∫Ω₁×Ω₂ F(x,y)dxdy
二、ʟᵖ 空间的定义
定义 设 p∈ℝ,1 ≤ p<∞,令
Lᵖ(Ω)={f:Ω → ℝ;f |f|ᵖ∈L¹(Ω)}
定义范数‖f‖ʟᵖ=[∫Ω|f(x)|ᵖdx]¹/ᵖ.
定义 令
L∞(Ω)={f:Ω → ℝ;f C |f(x)| ≤ C α,e. Ω }
定义范数
‖f‖ʟ∞=inf{C;|f(x)| ≤ C α,e. Ω}。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。