数学联邦政治世界观
超小超大

准素分解与诺特环 (9-1)

在抽象代数的课程里,我们学习过唯一分解整环的概念,它的定义是:任一非零元素均可分解为有限个不可约元素的乘积,并且这种分解是唯一的。可以证明,整环A 是唯一分解整环 ⇔ A 满足理想的升链条件(即 A 为 Noether 环),并且 A 中每个不可约元都是素元(注意素元显然是不可约元)

一般情况下,一个整环可能不具有“唯一分解”这样好的性质,最经典的例子比如ℤ[√–5] ,可以证明 2 , 3 , 1 ± √–5 均是其上两两不相伴的不可约元,但我们有等式 6=2 × 3=(1+√–5)(1 – √–5),因而 ℤ[√–5] 不是唯一分解整环

代数数论中我们更多考虑的是理想的分解,即将一个理想分解为若干个素理想的乘积,而不是元素的分解;将素数过渡到理想,即为素理想,将素数幂过渡到理想,就是本节研究的对象——准素理想;这一类比对于本节概念的理解是十分有帮助的

我们后面会证明,Dedekind 整环具有素理想分解的唯一性;如果仅仅只是 Noether 环,则不一定具有此性质,它的理想不一定可分解为素理想之积,但 Noether 环总是满足较弱一些的性质,即理想总可以分解为准素理想之交,这就是准素分解

本节内容参考 Atiyah 第四章和第七章,纯水,就是翻译了一遍,建议读者养成阅读原著的好习惯

1准素分解理论

定义1.1 (primary ideal)称 A 的一个理想 q ⊂ A 是准素的(primary),如果 q ≠ A ,并且对于 xy ∈ q , x ∉ q ,必存在正整数 n 使得 yⁿ ∈ q ,即 y ∈ r(q) ;换句话说就是, A/q ≠ 0 并且 A/q 的任一零因子皆是幂零元

容易证明,任一素理想必为准素理想;设f:A → B 为环同态, q ⊂ B 为准素理想,则其原像 f⁻¹(q) 也为准素理想;如果 f 是满射,可以证明,如果 A 的准素理想 q ⊃ Kerf ,则 f(q) 是 B 的准素理想

命题1.2 设 q ⊂ A 为准素理想,则其根基 r(q) 必为素理想;进而推出 r(q) 是包含 q 的最小素理想

Pf. 设 xy ∈ r(q) ,则存在 m>0 使得 xᵐyᵐ=(xy)ᵐ ∈ q ,于是由 q 的准素性可知有 xᵐ ∈ q 或者存在一个 n>0 使得 yᵐⁿ ∈ q ,此即 x ∈ r(q) 或 y ∈ r(q)

如果p=r(q) ,则称 q 是p– 准素的(p– primary);设 xy ∈ q , q 为 p– 准素的,则或有 x ∈ q 或有 y ∈ p

我们来看几个例子:

(1)整数环ℤ 的所有准素理想为 (0) 和 (pⁿ) ,其中 p 是素数, n>0 为正整数;

(2)设A=k[x,y] , q=(x,y²) ,则 A/q ≃ k[y]/(y²) ,容易看出 A/q 的所有零因子是 y 的某个倍数,所以其零因子均是幂零的,由此得到 q 是 A 的准素理想;计算可得 q 的根基 p=(x,y) ,于是 p² ⊊ q ⊊ p ,由此推出准素理想并不一定总是一个素理想的幂次(这里用到任一素理想幂次的根基均等于该素理想);

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

天灵界水凉 连载中
天灵界水凉
波圈up-北良
作者试水
0.1万字9个月前
哑迹 连载中
哑迹
梨栗y
在平行世界2036年,人类文明被毁前夕,部分人类觉醒异能,主角前世为了拯救世界而拼博,可是他对未来的无知导致失败,最后失望死去,然重生回到1......
2.0万字9个月前
黎明的赎光 连载中
黎明的赎光
l萧l
简介正在更新
0.5万字8个月前
蕊和 连载中
蕊和
金宇晗
瞎写
0.1万字8个月前
血色蔷薇蔓荆棘 连载中
血色蔷薇蔓荆棘
慕容小仙
本书以《山海经》神兽为原型所原创的玄幻小说,故事纯属虚构,世界观却真实,小甜风!黄帝之后轩辕分族,以龙为图腾,拯救苍生!三十六脉以荆棘为腾,......
29.6万字8个月前
清清晚风吟 连载中
清清晚风吟
桃绘姬奈子
最初的宇宙是一片虚无的宇宙中蕴藏着各种能量,创世之力、毁灭之力、秩序之力远古神明便是在这些能量中孕育而出诞生于创世之力的创世之神,是宇宙明的......
10.7万字8个月前