Σ₂-sentence is true in Ultimate-L,so we are required to find a univer-sallyBaire set of reals A in Ultimate-L such that the Σ₂-sentence in questions holds in (HOD)ᴸ⁽ᴬ,ℝ⁾∩V𝚹ᴸ₍ᴀ,R₎. From well-known generic absoluteness results which are known to hold assuming a proper class of Woodin cardinals,it is sufficient to prove that this does obtain in some set-generic extension of Ultimate-L.So choose an ordinal β such that (Vᵦ)Utimate-L is a Σ₂-elementary substructure of Ultimate-L,and choose a γ<β such that (Vᵧ)Ultimate-L models the Σ₂-sentence. Now consider a generic extension of Ultimate-L where A is a universally Baire set chosen to contain enough data so that.in the generic exten-sion,𝚹ᴸ⁽ᴬ,ℝ⁾ ≤ β,and (HOD)ᴸ⁽ᴬ,ℝ⁾∩ Vᵧ in the generic extension is equal to the intersection of the Ultimate-L of the ground model and Vᵧ. This can be arranged by ensuring that each ordinal less than β is collapsed to be countable in the generic extension,and that all the data for sets of ordinals less than γ which are needed to generate(Ultimate L∩Vᵧ)ⱽ are coded into the universally Baire set A which appears as a set of reals in the generic extension. In this generic extension,the de-sired result obtains,so the aforementioned generic absoluteness results imply that it obtains in our ground model as well. This completes the proof of Theorem 6.4. ▢
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。