数学联邦政治世界观
超小超大

终极L(数学论文)二 (7-5)

Σ₂-sentence is true in Ultimate-L,so we are required to find a univer-sallyBaire set of reals A in Ultimate-L such that the Σ₂-sentence in questions holds in (HOD)ᴸ⁽ᴬ,ℝ⁾∩V𝚹ᴸ₍ᴀ,R₎. From well-known generic absoluteness results which are known to hold assuming a proper class of Woodin cardinals,it is sufficient to prove that this does obtain in some set-generic extension of Ultimate-L.So choose an ordinal β such that (Vᵦ)Utimate-L is a Σ₂-elementary substructure of Ultimate-L,and choose a γ<β such that (Vᵧ)Ultimate-L models the Σ₂-sentence. Now consider a generic extension of Ultimate-L where A is a universally Baire set chosen to contain enough data so that.in the generic exten-sion,𝚹ᴸ⁽ᴬ,ℝ⁾ ≤ β,and (HOD)ᴸ⁽ᴬ,ℝ⁾∩ Vᵧ in the generic extension is equal to the intersection of the Ultimate-L of the ground model and Vᵧ. This can be arranged by ensuring that each ordinal less than β is collapsed to be countable in the generic extension,and that all the data for sets of ordinals less than γ which are needed to generate(Ultimate L∩Vᵧ)ⱽ are coded into the universally Baire set A which appears as a set of reals in the generic extension. In this generic extension,the de-sired result obtains,so the aforementioned generic absoluteness results imply that it obtains in our ground model as well. This completes the proof of Theorem 6.4. ▢

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

UT同人:完美的世界 连载中
UT同人:完美的世界
日月黑音
当nightmare并掉到一个人类世界,并变成人类小孩会发生什么?
0.2万字4周前
航天学院喜会长 连载中
航天学院喜会长
喜初黎
0.4万字4周前
念鸢阁:如若初见 连载中
念鸢阁:如若初见
没吃药的冷言
『念鸢阁』旧时余鸢歌百啭,月影独酌印沧澜<念鸢阁系列作品集-如若初见>编剧/总设/封面:冷言出演人员:念鸢阁部分成员/私设/阁主......
10.2万字4周前
神的女王 连载中
神的女王
黑鬼仙
末地的女王永存。人与神的斗争,总有一天会结束。(不虐,包甜。(假的)▄︻┻┳═一……☆(>○<))图片来自网络,若有侵权请及时联......
13.8万字4周前
执子手伴一生 连载中
执子手伴一生
殇ベ瞳荧
这本书是我和九幽V一起写的,由我来更新。男主韵是天帝第一废子,神龙绝脉,但却不知他后来不再是废子,天界众神官都知道韵只是天帝收养的义子,和天......
11.3万字4周前
浮生梦…… 连载中
浮生梦……
希黎er
浮生一梦红雨落似水流年玄都开吾愿为汝芳心破苍穹你弃我奔赴沙场我在家中流泪光我乘乌篷船去你家乡“君临,你爱我吗?”“如果我不爱你,这世间,还会......
7.0万字4周前