数学联邦政治世界观
超小超大

Dedekind定理

Dedekind定理:若存在集合 A,B 满足条件:

1.A,B ≠ ∅;

2. A∪B=ℝ

3.对A 中的任意元素 α,B 中的任意元素 b ,都有 α<b

则:

1.A 中无最大元, B 中有最小元;

2.B 中无最大元, A 中有最小元

有且仅有一个成立:

证明:假设 A 中不存在最大元且 B 中不存在最小元

取A 中任一元素 α₁,B 中任一元素 α₂ ,则

α₁+α₂

────

2

一定落在 A,B 中的一个.若其落在 A 中,由于 B 无最小元,故一定存在整数 K 使得

α₂ – α₁

α₂ – ────

K

落在 B 中.

考虑将区间[α₁,α₂] K 等分,则一定存在相邻的两个分点使得左侧的在 A 中而右侧的在 B 中,记左侧的点代表的数为 α₃,右侧的为 α₄;再将区间 [α₁,α₂]K+1 等分,类似得到 α₅,α₆ ...

这样我们就构造出了一个数列{αₙ},它满足:

1.奇数项都在A 中,偶数项都在 B 中;

2.对于∀ϵ>0,取

2(α₂ – α₁)

S=[─────]+2

ϵ

,则对区间[α₁,α₂] S S+1,. . . 等分所形成的所有 {αₙ} 中的项,从中任取 αᵣ,αₘ,则一定有 |αᵣ – αₘ|<ϵ 成立,故 {αₙ} 是 Cαuchy 列,其收敛

设{αₙ} → T ,则 T 一定落在 A,B 中的一个,不妨设其落在 B 中,则由于 B 无最小元,则一定存在 γ∈B 且 γ<T ,则这时取 ϵ=T – γ ,则一定有无穷多连续项落在 B(T,ϵ) 中,这与 {αₙ} 的性质矛盾!

若A 中存在最大元且 B 中存在最小元,则记 A 中最大元为 α,B 中最小元为 b ,则对于 α>b,α=b,α<b 都容易推出矛盾 ▢

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

倾靳 连载中
倾靳
倾靳
杂文
0.3万字9个月前
当迈克狐加入反派 连载中
当迈克狐加入反派
追求自由_116043662766944
0.1万字9个月前
这个卡尔有点甜 连载中
这个卡尔有点甜
樱兰想肉吃
约美人和伊索的爱情故事哟~
6.9万字9个月前
盟卡车神:未来之友 连载中
盟卡车神:未来之友
该用户已注销
小璘在未来的故事(小璘粉一定喜欢)
0.6万字9个月前
天选之子之青幽镜 连载中
天选之子之青幽镜
该用户已注销
 本文又名[反派的虐徒曰常]穿成僵尸是种什么样的体验?叶含表示:这简直不要太刺激!一场车祸惨死的叶含穿进朽图大陆,开启了一段奇妙的旅途。系统......
16.9万字9个月前
暮色千辞之景修 连载中
暮色千辞之景修
楠知君
此书又名【透明炮灰在线跑路】楠知君首部原创女频作品码字不易未经同意禁止转载——文案一因买烧烤而被人误推滚下楼梯,因抢救无效的千辞,死后被续命......
8.5万字9个月前