数学联邦政治世界观
超小超大

集合论基数Zermelo-Konig定理

对角线方法表面上是找到一个不在列表中的元素,例如当我们把实数排成一列之后,找到某个实数不属于该序列。它的本质其实是先假设两个集合A,B之间存在双射 f(单射其实就行了),再证明存在某个x ∈ A,

使得f(x) ∉ B,从而假设的 f 不存在。但狭义上的对角线方法不需要选择公理(在构造不属于序列的实数时可以有特定的构造方法),一般情况下还是需要选择公理说明 x 的存在性。

柯尼希定理从左到右存在单射不需要对角线方法,只有证明从右到左不存在单射时需要。根据选择公理,我可以假设直积°和直和都不空。假设存在 Y=∏ Yλ到

λ∈∧

X=∪Xλ的单射,那么存在X到Y的满射,记作f。 ↑

λ∈∧

对于任意入λ∈∧,记 pλ:Y → Yλ 为投影映射,fλ 是把 f:X → Y限制在 Xλ 上的限制映射,那么得到复合映射。

ps ◦fλ:Xλ → Xλ 。因为|Xλl<|Yλ|,所以pλ◦fλ 不可能是满射(否则由分割原则得到

|Xλ|=|Yλ|,这就是要求不等号严格成立的原因)。

为了书写方便令gλ=pλ◦fλ,那么

Zλ=Yλ – gλ(X) ≠ ∅。对非空集族{Zλ|λ∈∧}使用选择公理,从每个 Zλ ⊂ Yλ 中选择一个元素 zλ,得到 z=(zλ)λ∈∧∈Y。又因为f:X → Y 是满射,所以存在x∈X,使得f(x)=z。

由于x∈X=∪ Xλ,所以存在入λ∈∧,

λ∈∧

使得x∈Xλ。此时,

fλ(x)=f(x)=z ⇒ gλ(x)=pλ(z)=zλ ⇒ zλ ∈ gλ (Xλ),与 zλ ∈ Zλ 矛盾。

选择公理的作用一是保证了Y,Zλ ≠ ∅,二是保证了 z 的存在性。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

暂时没想好名字的一零一 连载中
暂时没想好名字的一零一
郁离波澜
无限流
0.1万字4周前
谁家师傅在墙角翻跟头啊 连载中
谁家师傅在墙角翻跟头啊
漫游的水母
简介正在更新
1.2万字4周前
小石寥寥 连载中
小石寥寥
梧桐妹
小石头寥寥因缘际会之下与仙界月神双修了,也因此展开了一场甜蜜的恋爱。恋爱的过程总总有些反派会到处出没,所以我们寥寥受伤了,需要大量的功德之力......
18.9万字4周前
变成系统后的那些事 连载中
变成系统后的那些事
你的随便已送达
警告!这是一本比较考验脑洞的……沙雕文(⑉°з°)-♡带有一点“小虐”。第一次写文,不好的话,也请见谅,你们可以提出意见,我会改正的。原创,......
14.4万字4周前
深渊的曙光 连载中
深渊的曙光
冰水寒心
情字一字无解,但求良人共度生。你是我生命中唯一的光,是身处深渊中的我唯一的曙光——等救赎我的光全都消散了,我也该坠入无尽的深渊深处了。待我进......
12.6万字4周前
流云落叶 连载中
流云落叶
深blue
【18日开始更新】死去多年的作者诈尸
10.5万字4周前