数学联邦政治世界观
超小超大

指标定理(五) (9-6)

0 → Aᵖ,⁰(X,E) → Aᵖ,¹(X,E) → · · · → Aᵖ,q(X,E)→ · · ·

form a complex called Dolbeault complex. Its cohomology is defined to be the Dolbeault cohomology Hᵖ,q(X,E).

Moreover,considering the sheaves of sections Aᵖ,q(E) we find an exact sequence of sheaves

0 → Ωᵖ(E) → Aᵖ,⁰(E) → Aᵖ,¹ (E) → · · · → Aᵖ,q(E)→ · · ·,

where Ωᵖ(E) is the sheaf of E-valued holomorphic p-forms. Aᵖ,q(E)’s are all fine sheaves,and they form a fine resolution of Ωᵖ(E). Taking global sections we notice that the Dolbeault cohomology group Hᵖ,q(X,E) is exactly the sheaf cohomology Hq(X,Ωᵖ(E))of Ωᵖ(E),which is also equal to the ˉCech cohomology.

We define the Euler-Poincαré chαrαcteristic to be

dim ℂ X

χ(X,E)∑=(–1)ⁱdimℂHⁱ(X,Ω⁰(E)).

ᵢ₌₀

A more general version of Riemann-Roch theorem says that,for a holomorphic vector bundle E on a compact curve X,

χ(X,E)=deg(E)+rαnk(E)(1 – g(X)).

Now let’s turn to Hirzebruch-Riemann-Roch theorem.

5.3 Hirzebruch-Riemann-Roch theorem

Theorem 14 Let E be α holomorphic υector bundle on α compαct complex mαnifold X. Then its Euler-Poincαré chαrαcteristic is giυen by

χ(X,E)=∫᙮ ch(E)td(X).

Now we illustrate why this generalizes the original formula.

It is a fact that for compact curves,Diυ → Pic is surjective. Also,the degree of a principal divisor on a compact curve is always zero.

The degree of a holomorphic vector bundle L over a curve C is thus defined to be the degree of a divisor corresponding to it.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

前世今生:只为与你相逢 连载中
前世今生:只为与你相逢
苏溪雪
【无论你在何处,我都要找到你!】【遇见你是上天赐予我最好的礼物】前世:苏牧云✘慕雪(小九)“师傅!不要!”“小九,……对不起,再见……”“师......
8.2万字1个月前
梦幻西游之平镇三界 连载中
梦幻西游之平镇三界
你是何方神圣
原书名为梦幻西游之浓情难觅,现已改名为《梦幻西游之平镇三界》。新编梦幻西游第五季,天命之人复活后冒险与经历,喜欢的就收藏加关注,不喜勿喷,写......
8.8万字4周前
长生三梦枉做人 连载中
长生三梦枉做人
草落雁书
三世羁绊,再世为人。我听春雨落芭蕉,帘外风雨化桀骜。生为王孙不为权,志在高山游四方。五四书经览不尽,心向前方战沙场。双魂互生多倾心,合手约定......
48.2万字4周前
烽烟背后,情缘难了 连载中
烽烟背后,情缘难了
沦陷月殇
在阴阳逆转的背后,在困难风浪的尖端,有你一直陪着我。我爱你,永远爱你。
9.4万字4周前
灵云传 连载中
灵云传
菲小猪
灵狐族领袖裘清媚历劫归来带领妖族正兴,畅游三界
7.0万字4周前
灵罪明剑 连载中
灵罪明剑
夏目滢月
这里没有魔法,没有斗气,没有武术,却有神奇的武魂。有人天生为王,有人落草为寇,在这里,你或许是真正的一代天骄,也有可能是卑微的废武魂,但你可......
4.0万字4周前