𝓞 ᴅ₊ᴘ/𝓞 ᴅ is merely a presheaf. But indeed,the long exact sequence associated to the sequence still holds. For ∪ such that P ∉ ∪,𝓞 ᴅ₊ᴘ/𝓞 ᴅ(∪) =0. For ∪ such that P ∈ ∪. 𝓞 ᴅ₊ᴘ/𝓞 ᴅ(∪) is one-dimensional. H⁰ (M,𝓞 ᴅ₊ᴘ/𝓞 ᴅ)=ℂ since it is equal to the space of global sections, and now we compute H¹(M,𝓞 ᴅ₊ᴘ/𝓞 ᴅ).
Suppose ξ ∈ H¹(M,𝓞 ᴅ₊ᴘ/𝓞 ᴅ) is represented by ф ∈ Z¹(𝓤 ,𝓞 ᴅ₊ᴘ/𝓞 ᴅ). The cover 𝓤 has a refinement 𝓥 such that P is covered by only one open set Vᵢ in 𝓥 . Thus 0=δф(i,i,i)=ф(i,i) –ф(i,i)+ф(i,i)=ф(i,i),and ф=0. Consequently H¹(M,𝓞 ᴅ₊ᴘ/𝓞 ᴅ)=0.
23
Consider the long exact sequence
0 → H⁰(M,𝓞 ᴅ) → H⁰(M,𝓞 ᴅ₊ᴘ) → H⁰(M,𝓞 ᴅ₊ᴘ/𝓞 ᴅ)=ℂ
→ H¹(M,𝓞 ᴅ) → H¹(M,𝓞 ᴅ₊ᴘ) → H¹(M,𝓞 ᴅ₊ᴘ/𝓞 ᴅ)=0.
It shows that H*(M,𝓞 ᴅ) is finite dimensional iff H*(M,𝓞 ᴅ₊ᴘ) is. Suppose this is the case, and now the alternating sum of the dimensions in the exact sequence is zero. That is to say,if χ(H*(M,𝓞 ᴅ)):=dim(H⁰(M,𝓞 ᴅ)) – dim(H¹(M,𝓞 ᴅ)),we have
χ(H*(M,𝓞 ᴅ)) – χ(H*(M,𝓞 ᴅ₊ᴘ))+1=0,
i.e.
χ(H*(M,𝓞 ᴅ)) – deg(D)=χ(H*(M,𝓞 ᴅ₊ᴘ)) – deg(D+P).
In particular for a compact Riemann surface, χ(H*(M,𝓞 ᴅ)) – deg(D) should be a con-stant. Recall that the genus g is defined to be dimH¹(X,𝓞 ) where 𝓞 =𝓞 ₀ is the sheaf of holomorphic functions,Taking D to be zero we find the constant is χ(H*(M,𝓞 ᴅ))=1–g.Thus we have proved that
Theorem 13 Suppose D is α diυisor on α compαct Riemαnn surfαce X of genus g. Then H⁰(X,𝓞 ᴅ) αnd H¹(X,𝓞 ᴅ) αre finite dimensionαl υector spαces αnd
dimH⁰(X,𝓞 ᴅ) – dimH¹(X,𝓞 ᴅ)=1 – 9 +degD.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。