ⱼ₌₁
₂ₖ xⱼ
∏ ────────) [X]
ⱼ₌₁ (eˣʲ/² – eˉˣʲ/²)²
₂ₖ xⱼ(eˣʲ/²+eˉˣʲ/²)
=(∏ ────────) [X]
ⱼ₌₁ (eˣʲ/² – eˉˣʲ/²)
₂ₖ xⱼ
=(∏ ───────) [X]
ⱼ₌₁ tanh(xⱼ/2)
1 ₂ₖ 2xⱼ
=─ (∏ ────) [X]
2²ᵏ ⱼ₌₁ tanh(xⱼ)
₂ₖ xⱼ
=(∏ ──── ) [X].
ⱼ₌₁ tanh(xⱼ)
Consequently,since p₁(lⱼ)= –c₂ (lⱼ ⨂ ℂ)= –c₂(lⱼ ⨁ ˉlⱼ)= –c₁(lⱼ)c₁(ˉlⱼ)=c₁(lⱼ)²,
22
L(TX)[X]=∏ L(1+p₁(lⱼ))[X]
₂ₖ √p₁(lⱼ)
=∏ ───── [X]
ⱼ₌₁ tanh(√p₁(lⱼ))
₂ₖ xⱼ
=(∏ ──── ) [X]=indₜ(d+d*).
ⱼ₌₁ tanh(xⱼ)
5 Riemann-Roch Theorem
5.1 Divisors on Riemann surfaces
Recall that a Riemann surface M is a one-dimensional complex manifold,and a diυisor is a mapping D:X → ℤ, such that in ∀compact K ⊂ X,there are only finitely many points where D takes nonzero values. Divisors form an abelian group Diυ(X). One can define a divisor (f) for a meromorphic function f (or a meromorphic one-form) in the obvious way:(f)(P)=k>0 if f has a zero of order k at P,and (f)(P)=k<0 if f has a pole of order –k at P. We require that f is never identically zero in any open set.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。