数学联邦政治世界观
超小超大

指标定理(四) (9-8)

The result follows from direct calculation using contour integration in complex analysis, and this completes the proof. ▢

In the proof above we are using the fact that the total Chern class of ℂPⁿ is of the form (1+α)ⁿ⁺¹ where α is a generator. We sketch a proof.Let L be the tautological line bundle(which is the dual of the hyperplane bundle H).Let ε be the trivial line bundle,and ω the complementary rank n bundle of L ⊂ εⁿ⁺¹. Thus TℂPⁿ=Hom(L,ω) and

TℂPⁿ ⨁ ε=Hom(L,ω ⨁ L)=Hom(L,εⁿ⁺¹)=(n+1)H.

Taking total Chern class of both sides we have c(TℂPⁿ)=(1+c₁(H))ⁿ⁺¹,as desired.

Now we show that this is indeed a special case of the Atiyah-Singer index theorem. Recall Aⁱ:=Γ(∧ⁱ(T* ⨂ ℂ)),〈α,b〉= ∫ₓ α∧ *ˉb.

Define τ:=(–1)ⁱ⁽ⁱ⁻¹⁾/²⁺ᵏ* and d*:= – * d*=–τdτ,where dim(X)=4k,and * is the Hodge-* operator. Since τ² is the identity, ∧(T* ⨂ ℂ)=E₊ ⨁ E₋ splits into eigenbundles with eigenvalues +1 and –1 with respect to τ. Since

T(d+d*)=τd – ττdτ=τd – dτ= –(dτ – τd)

= – (dτ+d*τ)= – (d+d*)τ,

one can consider d+d*:ΓE₊ → ΓE₋.

Recall H²ᵏ(X;ℂ) is isomorphic to the vector space of harmonic forms 𝓡 ²ᵏ(X)=ker(d+d*) ⊂ Γ(∧²ᵏ(T* ⨂ ℂ)). One verifies that 𝓡 ²ᵏ(X) splits into eigenspaces 𝓡 ₊²ᵏ(X)⨁

𝓡 ₋²ᵏ(X) with respect to τ:Γ(∧²ᵏ(T* ⨂ ℂ)) → Γ(∧²ᵏ(T* ⨂ ℂ)). Restricting to the space of real harmonic forms H²ᵏ(X;ℝ) ⊂ H²ᵏ(X;ℂ), this gives exactly the decomposition into positive and negative parts with respect to the intersection form. To see this,for example, for a real harmonic 2k-form α in 𝓡 ₊²ᵏ(X),we have

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

武战道翻版 连载中
武战道翻版
瑞香花山梦
已签约,不用抄袭,图片借鉴可以,内容请不要
25.4万字9个月前
山海星信 连载中
山海星信
小时椿
【己完结】【已授权非商广播剧】【原创作品】  【简介】  彼此之间错过却也是年轻时的冲动,也造成了最终的悲剧...  【温馨提醒】   如果......
1.1万字8个月前
猴子警长and弗兰熊的甜蜜暴击 连载中
猴子警长and弗兰熊的甜蜜暴击
瑜星味
文字游戏,评论区选择剧情走向
0.2万字8个月前
路的那头 连载中
路的那头
蓝晴芸
冒险搞笑奇幻灵异
12.2万字8个月前
快穿之老子被揍了 连载中
快穿之老子被揍了
冰诺茜希
1.7万字8个月前
吸血鬼猎人 连载中
吸血鬼猎人
雪月7
9.3万字8个月前