数学联邦政治世界观
超小超大

指标定理(四) (9-8)

The result follows from direct calculation using contour integration in complex analysis, and this completes the proof. ▢

In the proof above we are using the fact that the total Chern class of ℂPⁿ is of the form (1+α)ⁿ⁺¹ where α is a generator. We sketch a proof.Let L be the tautological line bundle(which is the dual of the hyperplane bundle H).Let ε be the trivial line bundle,and ω the complementary rank n bundle of L ⊂ εⁿ⁺¹. Thus TℂPⁿ=Hom(L,ω) and

TℂPⁿ ⨁ ε=Hom(L,ω ⨁ L)=Hom(L,εⁿ⁺¹)=(n+1)H.

Taking total Chern class of both sides we have c(TℂPⁿ)=(1+c₁(H))ⁿ⁺¹,as desired.

Now we show that this is indeed a special case of the Atiyah-Singer index theorem. Recall Aⁱ:=Γ(∧ⁱ(T* ⨂ ℂ)),〈α,b〉= ∫ₓ α∧ *ˉb.

Define τ:=(–1)ⁱ⁽ⁱ⁻¹⁾/²⁺ᵏ* and d*:= – * d*=–τdτ,where dim(X)=4k,and * is the Hodge-* operator. Since τ² is the identity, ∧(T* ⨂ ℂ)=E₊ ⨁ E₋ splits into eigenbundles with eigenvalues +1 and –1 with respect to τ. Since

T(d+d*)=τd – ττdτ=τd – dτ= –(dτ – τd)

= – (dτ+d*τ)= – (d+d*)τ,

one can consider d+d*:ΓE₊ → ΓE₋.

Recall H²ᵏ(X;ℂ) is isomorphic to the vector space of harmonic forms 𝓡 ²ᵏ(X)=ker(d+d*) ⊂ Γ(∧²ᵏ(T* ⨂ ℂ)). One verifies that 𝓡 ²ᵏ(X) splits into eigenspaces 𝓡 ₊²ᵏ(X)⨁

𝓡 ₋²ᵏ(X) with respect to τ:Γ(∧²ᵏ(T* ⨂ ℂ)) → Γ(∧²ᵏ(T* ⨂ ℂ)). Restricting to the space of real harmonic forms H²ᵏ(X;ℝ) ⊂ H²ᵏ(X;ℂ), this gives exactly the decomposition into positive and negative parts with respect to the intersection form. To see this,for example, for a real harmonic 2k-form α in 𝓡 ₊²ᵏ(X),we have

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

时旅Re0梦之殇 连载中
时旅Re0梦之殇
罪赎缘
当时间有了情感……当世界必然毁灭……当众神开始惶恐……我独自开启轮回之外的轮回!缔造毁灭下的新生!算计所有的一切!蔑视所有感情!践踏所有生命......
22.0万字4周前
异能大佬之结局未知1 连载中
异能大佬之结局未知1
鹿里屏
简介正在更新
26.2万字4周前
脑残系统,求放过 连载中
脑残系统,求放过
一顾倾君颜
【黑历史,文笔不忍直视】为什么别人的系统都是金手指,而我的系统全程不称职,打怪杀敌全是靠自己啊!一入系统深似海,从此节操是路人,但是为了那个......
17.2万字4周前
死孩子,你完了 连载中
死孩子,你完了
☆r~eviv~e★ᝰ
12.9万字4周前
仙侣奇缘之千古绝恋 连载中
仙侣奇缘之千古绝恋
竹仙醉儿
有一种爱相恋醉秋,有一种情美若陶花!两对绝世的仙侣,上演旷古的绝恋,至死不渝!生同栖死同穴,比翼双飞情牵三世千古不变的痴恋无悔,书写着一段传......
43.8万字4周前
我的师父是月老 连载中
我的师父是月老
花兮儿
我叫花乐瑶,一株曼珠沙华修炼成仙,不过我怎么莫名其妙就成了冥界公主?阎王还追着我叫皇儿?这也太诡异了吧!当然,这一切都无法阻止师父对我的喜爱......
6.7万字4周前